These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 12382699)

  • 1. Radiation dosimetry using three-dimensional optical random access memories.
    Moscovitch M; Phillips GW; Cullum BM; Mobley J; Bogard JS; Emfietzoglou D; Vo-Dinh T
    Radiat Prot Dosimetry; 2002; 101(1-4):17-22. PubMed ID: 12382699
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Radiation dosimetry using three-dimensional optical random access memories.
    Moscovitch M; Phillips GW
    Nucl Instrum Methods Phys Res B; 2001 Sep; 184(1-2):207-18. PubMed ID: 11863031
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Feasibility of a neutron detector-dosemeter based on single-event upsets in dynamic random-access memories.
    Phillips GW; August RA; Campbell AB; Nelson ME; Price JL; Guardala NA; Moscovitch M
    Radiat Prot Dosimetry; 2002; 101(1-4):129-32. PubMed ID: 12382721
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Simulation of radiation effects on three-dimensional computer optical memories.
    Moscovitch M; Emfietzoglou D
    J Appl Phys; 1997 Jan; 81(1):1-12. PubMed ID: 11541219
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A method of obtaining neutron dose and dose equivalent from digital measurements and analysis of recoil-particle tracks.
    Bolch WE; Turner JE; Hamm RN; Wright HA; Hurst GS
    Health Phys; 1987 Sep; 53(3):241-53. PubMed ID: 3623913
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Three-dimensional optical random access memory materials for use as radiation dosimeters.
    Cullum BM; Mobley J; Bogard JS; Moscovitch M; Phillips GW; Vo-Dinh T
    Anal Chem; 2000 Nov; 72(22):5612-7. PubMed ID: 11101239
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Focusing optics of a parallel beam CCD optical tomography apparatus for 3D radiation gel dosimetry.
    Krstajić N; Doran SJ
    Phys Med Biol; 2006 Apr; 51(8):2055-75. PubMed ID: 16585845
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Preliminary investigations on the determination of three-dimensional dose distributions using scintillator blocks and optical tomography.
    Kroll F; Pawelke J; Karsch L
    Med Phys; 2013 Aug; 40(8):082104. PubMed ID: 23927341
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Calculation of dose contributions of electron and charged heavy particles inside phantoms irradiated by monoenergetic neutron.
    Satoh D; Takahashi F; Endo A; Ohmachi Y; Miyahara N
    J Radiat Res; 2008 Sep; 49(5):503-8. PubMed ID: 18580044
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of wall thickness on measurement of dose for high energy neutrons.
    Perez-Nunez D; Braby LA
    Health Phys; 2010 Jan; 98(1):37-41. PubMed ID: 19959949
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Photonuclear dose calculations for high-energy photon beams from Siemens and Varian linacs.
    Chibani O; Ma CM
    Med Phys; 2003 Aug; 30(8):1990-2000. PubMed ID: 12945965
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A theoretical approach for non-equilibrium radiation dosimetry.
    Ding GX; Duggan DM; Coffey CW
    Phys Med Biol; 2008 Jul; 53(13):3493-9. PubMed ID: 18552420
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Automatic neutron dosimetry system based on fluorescent nuclear track detector technology.
    Akselrod MS; Fomenko VV; Bartz JA; Haslett TL
    Radiat Prot Dosimetry; 2014 Oct; 161(1-4):86-91. PubMed ID: 24285287
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A phoswich detector for high-energy neutrons.
    Takada M; Nakamura T
    Radiat Prot Dosimetry; 2007; 126(1-4):178-84. PubMed ID: 17525066
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Neutron Dosimetry System Using CR-39 for High-energy X-ray Radiation Therapy].
    Yabuta K; Monzen H; Tamura M; Tsuruta T; Itou T; Nohtomi A; Nishimura Y
    Igaku Butsuri; 2014; 34(3):139-48. PubMed ID: 26288880
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Prototypes of self-powered radiation detectors employing intrinsic high-energy current.
    Zygmanski P; Shrestha S; Briovio D; Karellas A; Sajo E
    Med Phys; 2016 Jan; 43(1):16. PubMed ID: 26745895
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Two-dimensional ultrahigh-density X-ray optical memory.
    Bezirganyan HP; Bezirganyan SE; Bezirganyan HH; Bezirganyan PH
    J Nanosci Nanotechnol; 2007 Jan; 7(1):306-15. PubMed ID: 17455496
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The response of a bonner sphere spectrometer to charged hadrons.
    Agosteo S; Dimovasili E; Fassò A; Silari M
    Radiat Prot Dosimetry; 2004; 110(1-4):161-8. PubMed ID: 15353640
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A potential application to the study of microscopic energy deposition in a solid by means of heavy charged-particle induced photochromic alterations in a tissue-equivalent matrix.
    Emfietzoglou D; Moscovitch M
    Phys Med Biol; 1999 Jan; 44(1):207-21. PubMed ID: 10071884
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evaluation of a personal and environmental dosemeter based on CR-39 track detectors in quasi-monoenergetic neutron fields.
    Caresana M; Ferrarini M; Parravicini A; Sashala Naik A
    Radiat Prot Dosimetry; 2014 Oct; 161(1-4):100-3. PubMed ID: 24324248
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.