These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 12382733)

  • 1. Pilot study on the application of computerised glow curve analysis in TL based personal dosimetry services.
    Delgado A; Gómez Ros JM; Stadtman H; Osorio V; Fantuzzi E; Vanhavere F
    Radiat Prot Dosimetry; 2002; 101(1-4):191-6. PubMed ID: 12382733
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The application of computerised analysis of glow curves to personal dosimetry in LiF:Mg,Cu,P.
    Tang KY; Zhu HY; Liu BX; Shen WX; Wang YC
    Radiat Prot Dosimetry; 2002; 101(1-4):239-42. PubMed ID: 12382743
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A method of identification of abnormal glow curves in individual monitoring using CaSO4:Dy teflon TLD and hot gas reader.
    Pradhan SM; Sneha C; Adtani MM
    Radiat Prot Dosimetry; 2011 Mar; 144(1-4):195-8. PubMed ID: 21186222
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The use of computerised glow curve analysis will optimise personal thermoluminescence dosimetry measurements. Opposing the proposition.
    Pradhan AS; Yoder RC
    Radiat Prot Dosimetry; 2002; 102(3):274-7. PubMed ID: 12430967
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A computer program for the deconvolution of thermoluminescence glow curves.
    Chung KS; Choe HS; Lee JI; Kim JL; Chang SY
    Radiat Prot Dosimetry; 2005; 115(1-4):343-9. PubMed ID: 16381744
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Computerised curve deconvolution of TL/OSL curves using a popular spreadsheet program.
    Afouxenidis D; Polymeris GS; Tsirliganis NC; Kitis G
    Radiat Prot Dosimetry; 2012 May; 149(4):363-70. PubMed ID: 21765155
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Computerised glow curve analysis: a tool for routine thermoluminescence dosimetry.
    Delgado A; Gómez Ros JM
    Radiat Prot Dosimetry; 2001; 96(1-3):127-32. PubMed ID: 11586716
    [TBL] [Abstract][Full Text] [Related]  

  • 8. TLDECOXCEL: A DYNAMIC EXCEL SPREADSHEET FOR THE COMPUTERISED CURVE DECONVOLUTION OF TL GLOW CURVES INTO DISCRETE-ENERGY AND/OR CONTINUOUS-ENERGY-DISTRIBUTION PEAKS.
    Kazakis NA
    Radiat Prot Dosimetry; 2019 Dec; 187(2):154-163. PubMed ID: 31165886
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Influence of background exposure on detection and determination limits for a TL dosimetry system based on LiF:Mg,Cu,P(GR-200A).
    Tang KY; Liu BX; Zhu HY; Wang YC; Shen WX
    Radiat Prot Dosimetry; 2002; 101(1-4):187-90. PubMed ID: 12382732
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Study of real time temperature profiles in routine TLD read out--influences of detector thickness and heating rate on glow curve shape.
    Stadtmann H; Hranitzky C; Brasik N
    Radiat Prot Dosimetry; 2006; 119(1-4):310-3. PubMed ID: 16825249
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Analysis of the glow curves obtained from LiF:Mg,Cu,Na,Si TL material using the general order kinetics model.
    Lee JI; Kim JL; Chang SY; Nam YM; Chung KS; Choe HS
    Radiat Prot Dosimetry; 2002; 100(1-4):341-4. PubMed ID: 12382893
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [The application of non-annealing thermoluminescent dosimetry (TLD)].
    Wu JM; Chen CS; Lan RH
    Changgeng Yi Xue Za Zhi; 1993 Jun; 16(2):111-9. PubMed ID: 8339153
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Studies on automatic hot gas reader used in the countrywide personnel monitoring programme.
    Kumar M; Alagu Raja E; Prasad LC; Popli KL; Kher RK; Bhatt BC
    Radiat Prot Dosimetry; 2005; 113(4):366-73. PubMed ID: 15843392
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Thermal quenching of thermoluminescence in natural quartz.
    Nanjundaswamy R; Lepper K; McKeever SW
    Radiat Prot Dosimetry; 2002; 100(1-4):305-8. PubMed ID: 12382884
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Study of real heating profiles in routine TLD readout: influences of temperature lags and non-linearities in the heating profiles on the glow curve shape.
    Stadtmann H; Delgado A; Gómez-Ros JM
    Radiat Prot Dosimetry; 2002; 101(1-4):141-4. PubMed ID: 12382724
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Thermoluminescence in medical dosimetry.
    Rivera T
    Appl Radiat Isot; 2012 Dec; 71 Suppl():30-4. PubMed ID: 22633888
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A new algorithm for identifying abnormal glow curves in thermoluminescence personal dosimetry.
    Osorio Piniella V; Stadtmann H; Lankmayr E
    Radiat Prot Dosimetry; 2001; 96(1-3):139-41. PubMed ID: 11586718
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Search for common characteristics in the glow curves of quartz of various origins.
    Pagonis V; Tatsis E; Kitis G; Drupieski C
    Radiat Prot Dosimetry; 2002; 100(1-4):373-6. PubMed ID: 12382901
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The use of computerised glow curve analysis will optimise personal thermoluminescence dosimetry measurements. Favouring the proposition.
    Horowitz Y; Delgado A
    Radiat Prot Dosimetry; 2002; 102(3):269-73. PubMed ID: 12430966
    [No Abstract]   [Full Text] [Related]  

  • 20. Optimisation of the readout parameters when evaluating thermal neutron doses by TL dosimetry with LiF:Mg,Ti.
    German U; Weinstein M; Abraham A; Alfassi ZB
    Radiat Prot Dosimetry; 2007; 126(1-4):532-5. PubMed ID: 17513859
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.