BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 12382794)

  • 1. Miniature thermoluminescent detectors for dosimetry in radiotherapy.
    Bilski P; Waligórski MP; Budzanowski M; Ochab E; Olko P
    Radiat Prot Dosimetry; 2002; 101(1-4):473-6. PubMed ID: 12382794
    [TBL] [Abstract][Full Text] [Related]  

  • 2. New 2-D dosimetric technique for radiotherapy based on planar thermoluminescent detectors.
    Olko P; Marczewska B; Czopyk L; Czermak MA; Klosowski M; Waligórski MP
    Radiat Prot Dosimetry; 2006; 118(2):213-8. PubMed ID: 16735573
    [TBL] [Abstract][Full Text] [Related]  

  • 3. LiF:Mg,Cu,P 'pin worms': miniature detectors for brachytherapy dosimetry.
    Hood C; Duggan L; Bazley S; Denham J; Budzanowski M; Kron T
    Radiat Prot Dosimetry; 2002; 101(1-4):407-10. PubMed ID: 12382778
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dosimetry of ruthenium-106 ophthalmic applicators with thin layer thermoluminescence dosimeters - Clinical quality control.
    Krause F; Möller M; Risske F; Siebert FA
    Z Med Phys; 2020 May; 30(2):142-147. PubMed ID: 31818650
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Dosimetry of ruthenium applicators with an eye phantom and small volume thermoluminescence detectors].
    Muskalla K; Pothmann B; Alberti W; Bornfeld N; Foerster MH; Harder D; Hermann KP; Tabor P; Sack H; Wessing A
    Fortschr Ophthalmol; 1989; 86(6):655-8. PubMed ID: 2625294
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dosimetry of BNCT beams with novel thermoluminescent detectors.
    Bilski P; Budzanowski M; Ochab E; Olko P; Czopyk Ł
    Radiat Prot Dosimetry; 2004; 110(1-4):623-6. PubMed ID: 15353719
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Results and implications of high-resolution surface dosimetry of ruthenium-106 eye applicators.
    Menapace R; Binder W; Chiari A
    Ophthalmologica; 1992; 204(2):93-100. PubMed ID: 1594188
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Solid state TL detectors for in vivo dosimetry in brachytherapy.
    Gambarini G; Borroni M; Grisotto S; Maucione A; Cerrotta A; Fallai C; Carrara M
    Appl Radiat Isot; 2012 Dec; 71 Suppl():48-51. PubMed ID: 22920417
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Determination of surgeon's absorbed dose in iodine 125 and ruthenium 106 ophthalmic plaque surgery.
    Laube T; Flühs D; Kessler C; Bornfeld N
    Ophthalmology; 2000 Feb; 107(2):366-8; discussion 368-9. PubMed ID: 10690840
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Validation of a radiotherapy treatment planning system using an anthropomorphic phantom and MTS-N thermoluminescent detectors.
    Waligórski MP; Bilski P; Lesiak J; Byrski E; Rozwadowska-Bogusz B; Barańczyk R; Góra E; Ochab E; Olko P
    Radiat Prot Dosimetry; 2002; 101(1-4):477-80. PubMed ID: 12382795
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Response of LiF:Mg,Ti thermoluminescent dosimeters at photon energies relevant to the dosimetry of brachytherapy (<1 MeV).
    Tedgren AC; Hedman A; Grindborg JE; Carlsson GA
    Med Phys; 2011 Oct; 38(10):5539-50. PubMed ID: 21992372
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Using LiF:Mg,Cu,P TLDs to estimate the absorbed dose to water in liquid water around an 192Ir brachytherapy source.
    Lucas PA; Aubineau-Lanièce I; Lourenço V; Vermesse D; Cutarella D
    Med Phys; 2014 Jan; 41(1):011711. PubMed ID: 24387503
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterisation of thermoluminescent LiF:Mg,Ti (MTS-N) detectors in the 85-550 K temperature range.
    Briand D; Vincellér S; Iacconi P; Berkane-Krachai A; Bilski P; Benabdesselam M; Lapraz D
    Radiat Prot Dosimetry; 2002; 100(1-4):297-300. PubMed ID: 12382882
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dose levels of the occupational radiation exposures in Poland based on results from the accredited dosimetry service at the IFJ PAN, Krakow.
    Budzanowski M; Kopeć R; Obryk B; Olko P
    Radiat Prot Dosimetry; 2011 Mar; 144(1-4):107-10. PubMed ID: 21183549
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dosimetry and physical treatment planning for iodine eye plaque therapy.
    Alberti W; Pothmann B; Tabor P; Muskalla K; Hermann KP; Harder D
    Int J Radiat Oncol Biol Phys; 1991 May; 20(5):1087-92. PubMed ID: 2022510
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In vivo TLD dose measurements in catheter-based high-dose-rate brachytherapy.
    Adlienė D; Jakštas K; Urbonavičius BG
    Radiat Prot Dosimetry; 2015 Jul; 165(1-4):477-81. PubMed ID: 25809111
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dose distribution around a needle-like anode X-ray tube: dye-film vs. planar thermoluminescent detectors.
    Budzanowski M; Olko P; Marczewska B; Czopyk L; Slapa M; Stras W; Traczyk M; Talejko M
    Radiat Prot Dosimetry; 2006; 120(1-4):117-20. PubMed ID: 16614087
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Miniature LiF:Mg,Cu,P TLDs to study the effect of applicator material in 192-Ir brachytherapy.
    Hood C; Duggan L; Bazley S; Denham J; Kron T
    Australas Phys Eng Sci Med; 2006 Dec; 29(4):300-2. PubMed ID: 17260583
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Absorbed dose measurements of a handheld 50 kVP X-ray source in water with thermoluminescence dosemeters.
    Soares C; Drupieski C; Wingert B; Pritchett G; Pagonis V; O'Brien M; Sliski A; Bilski P; Olko P
    Radiat Prot Dosimetry; 2006; 120(1-4):78-82. PubMed ID: 16735571
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization of LiF:Mg,Ti thermoluminescence detectors in low-LET proton beams at ultra-high dose rates.
    Motta S; Christensen JB; Togno M; Schäfer R; Safai S; Lomax AJ; Yukihara EG
    Phys Med Biol; 2023 Feb; 68(4):. PubMed ID: 36696696
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 8.