These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

213 related articles for article (PubMed ID: 12382865)

  • 1. Detailed kinetic study of the thermoluminescence glow curve of synthetic quartz.
    Kitis G; Pagonis V; Carty H; Tatsis E
    Radiat Prot Dosimetry; 2002; 100(1-4):225-8. PubMed ID: 12382865
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Search for common characteristics in the glow curves of quartz of various origins.
    Pagonis V; Tatsis E; Kitis G; Drupieski C
    Radiat Prot Dosimetry; 2002; 100(1-4):373-6. PubMed ID: 12382901
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Thermal quenching of thermoluminescence in natural quartz.
    Nanjundaswamy R; Lepper K; McKeever SW
    Radiat Prot Dosimetry; 2002; 100(1-4):305-8. PubMed ID: 12382884
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Kinetic parameters of lithium and aluminium doped quartz from thermoluminescence glow curves.
    Gómez-Ros JM; Correcher V; García-Guinea J; Delgado A
    Radiat Prot Dosimetry; 2002; 100(1-4):399-402. PubMed ID: 12382907
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Point defects and the blue emission in fired quartz at high doses: a comparative luminescence and EPR study.
    Woda C; Schilles T; Rieser U; Mangini A; Wagner GA
    Radiat Prot Dosimetry; 2002; 100(1-4):261-4. PubMed ID: 12382873
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Isothermal decay studies of intermediate energy levels in quartz.
    Veronese I; Giussani A; Göksu HY; Martini M
    Radiat Environ Biophys; 2004 May; 43(1):51-7. PubMed ID: 15004702
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Thermoluminescence properties of annealed natural quartz after beta irradiation.
    Yüksel M; Dogan T; Unsal E; Portakal ZG; Akca S; Yegingil Z; Topaksu M
    Luminescence; 2016 Dec; 31(8):1513-1518. PubMed ID: 27072899
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparison of thermoluminescence (TL) and cathodoluminescence (ESEM-CL) properties between hydrothermal and metamorphic quartzes.
    Topaksu M; Correcher V; Garcia-Guinea J; Topak Y; Göksu HY
    Appl Radiat Isot; 2012 Jun; 70(6):946-51. PubMed ID: 22476018
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Analysis of the glow curves obtained from LiF:Mg,Cu,Na,Si TL material using the general order kinetics model.
    Lee JI; Kim JL; Chang SY; Nam YM; Chung KS; Choe HS
    Radiat Prot Dosimetry; 2002; 100(1-4):341-4. PubMed ID: 12382893
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Thermoluminescence of MgSO4 doped with Eu and P impurities.
    Zhang CX; Tang Q; Luo DL; Qiu ZR; Leung PL; Stokes MJ
    Radiat Prot Dosimetry; 2002; 100(1-4):407-11. PubMed ID: 12382909
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Time-resolved luminescence from annealed quartz.
    Chithambo ML
    Radiat Prot Dosimetry; 2002; 100(1-4):273-6. PubMed ID: 12382876
    [TBL] [Abstract][Full Text] [Related]  

  • 12. On the possibility of using commercial software packages for thermoluminescence glow curve deconvolution analysis.
    Pagonis V; Kitis G
    Radiat Prot Dosimetry; 2002; 101(1-4):93-8. PubMed ID: 12382713
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Thermoluminescence properties of LiF:Mg,Cu,Na,Si pellets in radiation dosimetry.
    Nam YM; Kim JL
    Radiat Prot Dosimetry; 2002; 100(1-4):467-70. PubMed ID: 12382923
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Thermoluminescence in CVD diamond films: application to actinometric dosimetry.
    Barboza-Flores M; Meléndrez R; Chernov V; Castañeda B; Pedroza-Montero M; Gan B; Ahn J; Zhang Q; Yoon SF
    Radiat Prot Dosimetry; 2002; 100(1-4):443-6. PubMed ID: 12382917
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Usability of VTL from natural quartz grains for retrospective dosimetry.
    Fujita H; Hashimoto T
    Radiat Prot Dosimetry; 2007; 123(2):143-7. PubMed ID: 16936290
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Investigation of the emission spectra of LiF:Mg,Ti (TLD-100) during thermoluminescence.
    Biderman S; Horowitz Y; Oster L
    Radiat Prot Dosimetry; 2002; 100(1-4):369-72. PubMed ID: 12382900
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fit of first order thermoluminescence glow peaks using the Weibull distribution function.
    Pagonis V; Mian SM; Kitis G
    Radiat Prot Dosimetry; 2001; 93(1):11-7. PubMed ID: 11548321
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Thermoluminescent studies of GdAlO
    Nolasco-Altamirano D; Barrera-Angeles AA; Lemus-Ruiz J; Ugalde-Valdes MA; Alonso-Sotolongo A; Gutiérrez-Marquez JG; Alvarez-Romero R; Zarate-Medina J; Rivera-Montalvo T
    Appl Radiat Isot; 2022 Aug; 186():110268. PubMed ID: 35550227
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Thermoluminescent properties of Ni and Co doped synthetic, high pressure, high temperature diamonds: application to ionising radiation dosimetry.
    Benabdesselam M; Iacconi P; Gheeraert E; Kanda H; Lapraz D; Briand D
    Radiat Prot Dosimetry; 2002; 100(1-4):329-32. PubMed ID: 12382890
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Heating rate effect on thermoluminescence glow curves of LiF:Mg,Cu,P+PTFE phosphor.
    Cruz-Zaragoza E; González PR; Azorín J; Furetta C
    Appl Radiat Isot; 2011 Oct; 69(10):1369-73. PubMed ID: 21683603
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.