These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 12382876)

  • 1. Time-resolved luminescence from annealed quartz.
    Chithambo ML
    Radiat Prot Dosimetry; 2002; 100(1-4):273-6. PubMed ID: 12382876
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Search for common characteristics in the glow curves of quartz of various origins.
    Pagonis V; Tatsis E; Kitis G; Drupieski C
    Radiat Prot Dosimetry; 2002; 100(1-4):373-6. PubMed ID: 12382901
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Thermal quenching of thermoluminescence in natural quartz.
    Nanjundaswamy R; Lepper K; McKeever SW
    Radiat Prot Dosimetry; 2002; 100(1-4):305-8. PubMed ID: 12382884
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Kinetic parameters of lithium and aluminium doped quartz from thermoluminescence glow curves.
    Gómez-Ros JM; Correcher V; García-Guinea J; Delgado A
    Radiat Prot Dosimetry; 2002; 100(1-4):399-402. PubMed ID: 12382907
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Detailed kinetic study of the thermoluminescence glow curve of synthetic quartz.
    Kitis G; Pagonis V; Carty H; Tatsis E
    Radiat Prot Dosimetry; 2002; 100(1-4):225-8. PubMed ID: 12382865
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Point defects and the blue emission in fired quartz at high doses: a comparative luminescence and EPR study.
    Woda C; Schilles T; Rieser U; Mangini A; Wagner GA
    Radiat Prot Dosimetry; 2002; 100(1-4):261-4. PubMed ID: 12382873
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparison of thermoluminescence (TL) and cathodoluminescence (ESEM-CL) properties between hydrothermal and metamorphic quartzes.
    Topaksu M; Correcher V; Garcia-Guinea J; Topak Y; Göksu HY
    Appl Radiat Isot; 2012 Jun; 70(6):946-51. PubMed ID: 22476018
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Simulations of variability in the luminescence characteristics of natural quartz and its implications for estimates of absorbed dose.
    Bailey R
    Radiat Prot Dosimetry; 2002; 100(1-4):33-8. PubMed ID: 12382824
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Isothermal decay studies of intermediate energy levels in quartz.
    Veronese I; Giussani A; Göksu HY; Martini M
    Radiat Environ Biophys; 2004 May; 43(1):51-7. PubMed ID: 15004702
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Thermal pre-treatment in the OSL dating of quartz: is it necessary?
    Ankjaergaard C; Murray AS; Denby PM
    Radiat Prot Dosimetry; 2006; 119(1-4):470-3. PubMed ID: 16990349
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A system to irradiate and measure luminescence at low temperatures.
    Blair MW; Yukihara EG; McKeever SW
    Radiat Prot Dosimetry; 2006; 119(1-4):454-7. PubMed ID: 16735565
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of thermal annealing on the thermoluminescent properties of nano-calcium fluoride and its dose-response characteristics.
    Mundupuzhakal JK; Biswas RH; Chauhan S; Varma V; Acharya YB; Chakrabarty BS
    Radiat Prot Dosimetry; 2015 Dec; 167(4):419-24. PubMed ID: 25398396
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Usability of VTL from natural quartz grains for retrospective dosimetry.
    Fujita H; Hashimoto T
    Radiat Prot Dosimetry; 2007; 123(2):143-7. PubMed ID: 16936290
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Thermoluminescence properties of annealed natural quartz after beta irradiation.
    Yüksel M; Dogan T; Unsal E; Portakal ZG; Akca S; Yegingil Z; Topaksu M
    Luminescence; 2016 Dec; 31(8):1513-1518. PubMed ID: 27072899
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Thermoluminescent properties of Ni and Co doped synthetic, high pressure, high temperature diamonds: application to ionising radiation dosimetry.
    Benabdesselam M; Iacconi P; Gheeraert E; Kanda H; Lapraz D; Briand D
    Radiat Prot Dosimetry; 2002; 100(1-4):329-32. PubMed ID: 12382890
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ultraviolet thermoluminscent dosimetry using high temperature peaks in KCl:Eu2+ crystals.
    Chernov V; Meléndrez R; Barboza-Flores M
    Radiat Prot Dosimetry; 2002; 100(1-4):425-8. PubMed ID: 12382913
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Influence of thermal quenching on the thermostimulated processes in alpha-Al2O3. Role of F and F+ centres.
    Vincellér S; Molnár G; Berkane-Krachai A; Iacconi P
    Radiat Prot Dosimetry; 2002; 100(1-4):79-82. PubMed ID: 12382832
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparison of calculated beta- and gamma-ray doses after the Fukushima accident with data from single-grain luminescence retrospective dosimetry of quartz inclusions in a brick sample.
    Endo S; Fujii K; Kajimoto T; Tanaka K; Stepanenko V; Kolyzhenkov T; Petukhov A; Akhmedova U; Bogacheva V
    J Radiat Res; 2018 May; 59(3):286-290. PubMed ID: 29385528
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Theoretical modelling of experimental diagnostic procedures employed during pre-dose dosimetry of quartz.
    Pagonis V; Chen R; Kitis G
    Radiat Prot Dosimetry; 2006; 119(1-4):111-4. PubMed ID: 16581926
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Optically stimulated luminescence of some thermoluminescent detectors as an indicator of absorbed radiation dose.
    Jack I; Kerikmäe M; Lust A
    Radiat Prot Dosimetry; 2002; 100(1-4):459-62. PubMed ID: 12382921
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.