These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 12382940)

  • 21. Monte Carlo simulations of the secondary neutron ambient and effective dose equivalent rates from surface to suborbital altitudes and low Earth orbit.
    El-Jaby S; Richardson RB
    Life Sci Space Res (Amst); 2015 Jul; 6():1-9. PubMed ID: 26256622
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Detectors/Dosemeters of galactic and solar cosmic rays.
    Tommasino L
    Radiat Prot Dosimetry; 2004; 109(4):365-74. PubMed ID: 15273355
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A parametric study of space radiation exposures to critical body organs for low earth orbit missions.
    Atwell W; Beever ER; Hardy AC
    Adv Space Res; 1989; 9(10):243-5. PubMed ID: 11537298
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Measurements of trapped protons and cosmic rays from recent Shuttle flights.
    Badhwar GD; Konradi A; Braby LA; Atwell W; Cucinotta FA
    Radiat Prot Dosimetry; 1994; 52(1-4):439-45. PubMed ID: 11537893
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The applicability of radiophotoluminescence dosemeter (RPLD) for measuring medical radiation (MR) doses.
    Manninen AL; Koivula A; Nieminen MT
    Radiat Prot Dosimetry; 2012 Aug; 151(1):1-9. PubMed ID: 22232778
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Application of the high-temperature ratio method for evaluation of the depth distribution of dose equivalent in a water-filled phantom on board space station Mir.
    Berger T; Hajek M; Schöner W; Fugger M; Vana N; Akatov Y; Shurshakov V; Arkhangelsky V; Kartashov D
    Radiat Prot Dosimetry; 2002; 100(1-4):503-6. PubMed ID: 12382930
    [TBL] [Abstract][Full Text] [Related]  

  • 27. [Spatial distribution of local absorbed doses inside the Russian segment of the International Space Station].
    Bondarenko VA; Mitrikas VG; Tsetlin VV
    Aviakosm Ekolog Med; 2011; 45(4):22-7. PubMed ID: 21970039
    [TBL] [Abstract][Full Text] [Related]  

  • 28. ICRP, 123. Assessment of radiation exposure of astronauts in space. ICRP Publication 123.
    ; Dietze G; Bartlett DT; Cool DA; Cucinotta FA; Jia X; McAulay IR; Pelliccioni M; Petrov V; Reitz G; Sato T
    Ann ICRP; 2013 Aug; 42(4):1-339. PubMed ID: 23958389
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Active dosimetry on recent space flights.
    Beaujean R; Kopp J; Reitz G
    Radiat Prot Dosimetry; 1999; 85(1-4 Pt 2):223-6. PubMed ID: 11542228
    [TBL] [Abstract][Full Text] [Related]  

  • 30. [The method based on generalized dosimetric function for estimation of cosmonauts' radiation hazard during long-term space missions].
    Shafirkin AV; Grigor'ev IuG
    Radiats Biol Radioecol; 2002; 42(5):526-32. PubMed ID: 12449821
    [TBL] [Abstract][Full Text] [Related]  

  • 31. NUNDO: a numerical model of a human torso phantom and its application to effective dose equivalent calculations for astronauts at the ISS.
    Puchalska M; Bilski P; Berger T; Hajek M; Horwacik T; Körner C; Olko P; Shurshakov V; Reitz G
    Radiat Environ Biophys; 2014 Nov; 53(4):719-27. PubMed ID: 25119442
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Single-track effects and new directions in GCR risk assessment.
    Curtis SB
    Adv Space Res; 1994; 14(10):885-94. PubMed ID: 11538039
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Radiations in space: risk estimates.
    Fry RJ
    Radiat Prot Dosimetry; 2002; 100(1-4):475-7. PubMed ID: 12382925
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A methodology for investigating the impact of medical countermeasures on the risk of exposure induced death.
    Werneth CM; Slaba TC; Blattnig SR; Huff JL; Norman RB
    Life Sci Space Res (Amst); 2020 May; 25():72-102. PubMed ID: 32414495
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Summary of measurements of high-LET particle radiation in U.S. manned space missions.
    Benton EV; Peterson DD; Henke RP
    Life Sci Space Res; 1977; 15():119-27. PubMed ID: 11958206
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Investigation of radiation doses in open space using TLD detectors.
    Reitz G; Facius R; Bilski P; Olko P
    Radiat Prot Dosimetry; 2002; 100(1-4):533-6. PubMed ID: 12382937
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Dynamical modeling approach to risk assessment for radiogenic leukemia among astronauts engaged in interplanetary space missions.
    Smirnova OA; Cucinotta FA
    Life Sci Space Res (Amst); 2018 Feb; 16():76-83. PubMed ID: 29475522
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Microprocessor controlled portable TLD system.
    Apathy I; Deme S; Feher I
    Radiat Prot Dosimetry; 1996; 66(1-4):441-4. PubMed ID: 11540052
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Space radiation cancer risks and uncertainties for Mars missions.
    Cucinotta FA; Schimmerling W; Wilson JW; Peterson LE; Badhwar GD; Saganti PB; Dicello JF
    Radiat Res; 2001 Nov; 156(5 Pt 2):682-8. PubMed ID: 11604093
    [TBL] [Abstract][Full Text] [Related]  

  • 40. [SUBSTANTIATION OF DOSE LIMITS FOR A NEW NORMATIVE DOCUMENT ON RADIATION SAFETY OF LONG-DURATION SPACE MISSIONS AT ORBIT ALTITUDES OF UP TO 500 KM].
    Ushakov IB; Grigoriev YG; Shafirkin AV; Shurshakov VA
    Aviakosm Ekolog Med; 2016; 50(1):39-54. PubMed ID: 27347592
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.