BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

104 related articles for article (PubMed ID: 12383056)

  • 1. Cd2+ and the N-terminal metal-binding domain protect the putative membranous CPC motif of the Cd2+-ATPase of Listeria monocytogenes.
    Bal N; Wu CC; Catty P; Guillain F; Mintz E
    Biochem J; 2003 Feb; 369(Pt 3):681-5. PubMed ID: 12383056
    [TBL] [Abstract][Full Text] [Related]  

  • 2. CadA, the Cd2+-ATPase from Listeria monocytogenes, can use Cd2+ as co-substrate.
    Wu CC; Gardarin A; Catty P; Guillain F; Mintz E
    Biochimie; 2006 Nov; 88(11):1687-92. PubMed ID: 16889884
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The cadmium transport sites of CadA, the Cd2+-ATPase from Listeria monocytogenes.
    Wu CC; Gardarin A; Martel A; Mintz E; Guillain F; Catty P
    J Biol Chem; 2006 Oct; 281(40):29533-41. PubMed ID: 16835223
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A possible regulatory role for the metal-binding domain of CadA, the Listeria monocytogenes Cd2+-ATPase.
    Bal N; Mintz E; Guillain F; Catty P
    FEBS Lett; 2001 Oct; 506(3):249-52. PubMed ID: 11602255
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Metal-binding characteristics of the amino-terminal domain of ZntA: binding of lead is different compared to cadmium and zinc.
    Liu J; Stemmler AJ; Fatima J; Mitra B
    Biochemistry; 2005 Apr; 44(13):5159-67. PubMed ID: 15794653
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A cloned prokaryotic Cd2+ P-type ATPase increases yeast sensitivity to Cd2+.
    Wu CC; Bal N; Perard J; Lowe J; Boscheron C; Mintz E; Catty P
    Biochem Biophys Res Commun; 2004 Nov; 324(3):1034-40. PubMed ID: 15485658
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Functional roles of metal binding domains of the Archaeoglobus fulgidus Cu(+)-ATPase CopA.
    Mandal AK; Argüello JM
    Biochemistry; 2003 Sep; 42(37):11040-7. PubMed ID: 12974640
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structural basis for metal binding specificity: the N-terminal cadmium binding domain of the P1-type ATPase CadA.
    Banci L; Bertini I; Ciofi-Baffoni S; Su XC; Miras R; Bal N; Mintz E; Catty P; Shokes JE; Scott RA
    J Mol Biol; 2006 Feb; 356(3):638-50. PubMed ID: 16388822
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Kinetic analysis of metal binding to the amino-terminal domain of ZntA by monitoring metal-thiolate charge-transfer complexes.
    Dutta SJ; Liu J; Mitra B
    Biochemistry; 2005 Nov; 44(43):14268-74. PubMed ID: 16245943
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The first cytoplasmic loop of the mannitol permease from Escherichia coli is accessible for sulfhydryl reagents from the periplasmic side of the membrane.
    Vervoort EB; Bultema JB; Schuurman-Wolters GK; Geertsma ER; Broos J; Poolman B
    J Mol Biol; 2005 Feb; 346(3):733-43. PubMed ID: 15713459
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Novel Zn2+ coordination by the regulatory N-terminus metal binding domain of Arabidopsis thaliana Zn(2+)-ATPase HMA2.
    Eren E; González-Guerrero M; Kaufman BM; Argüello JM
    Biochemistry; 2007 Jul; 46(26):7754-64. PubMed ID: 17550234
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Functional importance of GGXG sequence motifs in putative reentrant loops of 2HCT and ESS transport proteins.
    Dobrowolski A; Lolkema JS
    Biochemistry; 2009 Aug; 48(31):7448-56. PubMed ID: 19594131
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The nucleotide-binding domain of the Zn2+-transporting P-type ATPase from Escherichia coli carries a glycine motif that may be involved in binding of ATP.
    Okkeri J; Laakkonen L; Haltia T
    Biochem J; 2004 Jan; 377(Pt 1):95-105. PubMed ID: 14510639
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Conservative and nonconservative mutations of the transmembrane CPC motif in ZntA: effect on metal selectivity and activity.
    Dutta SJ; Liu J; Stemmler AJ; Mitra B
    Biochemistry; 2007 Mar; 46(12):3692-703. PubMed ID: 17326661
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Copper(I) interaction with model peptides of WD6 and TM6 domains of Wilson ATPase: regulatory and mechanistic implications.
    Myari A; Hadjiliadis N; Fatemi N; Sarkar B
    J Inorg Biochem; 2004 Sep; 98(9):1483-94. PubMed ID: 15337600
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The structure and function of heavy metal transport P1B-ATPases.
    Argüello JM; Eren E; González-Guerrero M
    Biometals; 2007 Jun; 20(3-4):233-48. PubMed ID: 17219055
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Phosphorylation by cAMP-dependent protein kinase modulates the structural coupling between the transmembrane and cytosolic domains of phospholamban.
    Li J; Bigelow DJ; Squier TC
    Biochemistry; 2003 Sep; 42(36):10674-82. PubMed ID: 12962492
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Formation of a phosphorylated enzyme intermediate by the cadA Cd(2+)-ATPase.
    Tsai KJ; Linet AL
    Arch Biochem Biophys; 1993 Sep; 305(2):267-70. PubMed ID: 8373163
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Inhibition of human NTPDase 2 by modification of an intramembrane cysteine by p-chloromercuriphenylsulfonate and oxidative cross-linking of the transmembrane domains.
    Chiang WC; Knowles AF
    Biochemistry; 2008 Aug; 47(33):8775-85. PubMed ID: 18656957
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Metal Selectivity of a Cd-, Co-, and Zn-Transporting P
    Smith AT; Ross MO; Hoffman BM; Rosenzweig AC
    Biochemistry; 2017 Jan; 56(1):85-95. PubMed ID: 28001366
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.