BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

193 related articles for article (PubMed ID: 12383259)

  • 1. Inactivation of the 2-oxo acid dehydrogenase complexes upon generation of intrinsic radical species.
    Bunik VI; Sievers C
    Eur J Biochem; 2002 Oct; 269(20):5004-15. PubMed ID: 12383259
    [TBL] [Abstract][Full Text] [Related]  

  • 2. 2-Oxo acid dehydrogenase complexes in redox regulation.
    Bunik VI
    Eur J Biochem; 2003 Mar; 270(6):1036-42. PubMed ID: 12631263
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Using lipoate enantiomers and thioredoxin to study the mechanism of the 2-oxoacid-dependent dihydrolipoate production by the 2-oxoacid dehydrogenase complexes.
    Bunik V; Shoubnikova A; Loeffelhardt S; Bisswanger H; Borbe HO; Follmann H
    FEBS Lett; 1995 Sep; 371(2):167-70. PubMed ID: 7672120
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Redox-Driven Signaling: 2-Oxo Acid Dehydrogenase Complexes as Sensors and Transmitters of Metabolic Imbalance.
    Bunik VI
    Antioxid Redox Signal; 2019 Jun; 30(16):1911-1947. PubMed ID: 30187773
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Thioredoxin reduction dependent on alpha-ketoacid oxidation by alpha-ketoacid dehydrogenase complexes.
    Bunik V; Follmann H
    FEBS Lett; 1993 Dec; 336(2):197-200. PubMed ID: 8262228
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reduction of phenoxyl radicals by thioredoxin results in selective oxidation of its SH-groups to disulfides. An antioxidant function of thioredoxin.
    Goldman R; Stoyanovsky DA; Day BW; Kagan VE
    Biochemistry; 1995 Apr; 34(14):4765-72. PubMed ID: 7718583
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Phenoxyl radical-induced thiol-dependent generation of reactive oxygen species: implications for benzene toxicity.
    Stoyanovsky DA; Goldman R; Claycamp HG; Kagan VE
    Arch Biochem Biophys; 1995 Mar; 317(2):315-23. PubMed ID: 7893144
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Activation of mitochondrial 2-oxoacid dehydrogenases by thioredoxin.
    Bunik V; Follmann H; Bisswanger H
    Biol Chem; 1997 Oct; 378(10):1125-30. PubMed ID: 9372181
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Kinetics and specificity of reductive acylation of wild-type and mutated lipoyl domains of 2-oxo-acid dehydrogenase complexes from Azotobacter vinelandii.
    Berg A; Westphal AH; Bosma HJ; de Kok A
    Eur J Biochem; 1998 Feb; 252(1):45-50. PubMed ID: 9523710
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of superoxide dismutase mimics on radical adduct formation during the reaction between peroxynitrite and thiols--an ESR-spin trapping study.
    Karoui H; Hogg N; Joseph J; Kalyanaraman B
    Arch Biochem Biophys; 1996 Jun; 330(1):115-24. PubMed ID: 8651684
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Free radical intermediates in the reaction of pyruvate:ferredoxin oxidoreductase in Tritrichomonas foetus hydrogenosomes.
    Docampo R; Moreno SN; Mason RP
    J Biol Chem; 1987 Sep; 262(26):12417-20. PubMed ID: 3040744
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanisms of generation of oxygen radicals and reductive mobilization of ferritin iron by lipoamide dehydrogenase.
    Bando Y; Aki K
    J Biochem; 1991 Mar; 109(3):450-4. PubMed ID: 1652585
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Spin traps inhibit formation of hydrogen peroxide via the dismutation of superoxide: implications for spin trapping the hydroxyl free radical.
    Britigan BE; Roeder TL; Buettner GR
    Biochim Biophys Acta; 1991 Oct; 1075(3):213-22. PubMed ID: 1659450
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The lipoamide dehydrogenase from Mycobacterium tuberculosis permits the direct observation of flavin intermediates in catalysis.
    Argyrou A; Blanchard JS; Palfey BA
    Biochemistry; 2002 Dec; 41(49):14580-90. PubMed ID: 12463758
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Vascular oxidant stress early after balloon injury: evidence for increased NAD(P)H oxidoreductase activity.
    Souza HP; Souza LC; Anastacio VM; Pereira AC; Junqueira ML; Krieger JE; da Luz PL; Augusto O; Laurindo FR
    Free Radic Biol Med; 2000 Apr; 28(8):1232-42. PubMed ID: 10889453
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification of mitochondrial electron transport chain-mediated NADH radical formation by EPR spin-trapping techniques.
    Matsuzaki S; Kotake Y; Humphries KM
    Biochemistry; 2011 Dec; 50(50):10792-803. PubMed ID: 22091587
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Lipoylation of acyltransferase components of 2-oxo acid dehydrogenase complexes.
    Quinn J
    Methods Enzymol; 1997; 279():193-202. PubMed ID: 9211271
    [No Abstract]   [Full Text] [Related]  

  • 18. A trail of research from lipoic acid to alpha-keto acid dehydrogenase complexes.
    Reed LJ
    J Biol Chem; 2001 Oct; 276(42):38329-36. PubMed ID: 11477096
    [No Abstract]   [Full Text] [Related]  

  • 19. Crystal structure of 2-oxoisovalerate and dehydrogenase and the architecture of 2-oxo acid dehydrogenase multienzyme complexes.
    Aevarsson A; Seger K; Turley S; Sokatch JR; Hol WG
    Nat Struct Biol; 1999 Aug; 6(8):785-92. PubMed ID: 10426958
    [TBL] [Abstract][Full Text] [Related]  

  • 20. 2-ketoacid dehydrogenase complexes of Escherichia coli: stereospecificities of the three components for (R)-lipoate.
    Yang YS; Frey PA
    Arch Biochem Biophys; 1989 Feb; 268(2):465-74. PubMed ID: 2492417
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.