BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

420 related articles for article (PubMed ID: 12384051)

  • 1. The problem of estimating wind drift in migrating birds.
    Green M; Alerstam T
    J Theor Biol; 2002 Oct; 218(4):485-96. PubMed ID: 12384051
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Wind selection and drift compensation optimize migratory pathways in a high-flying moth.
    Chapman JW; Reynolds DR; Mouritsen H; Hill JK; Riley JR; Sivell D; Smith AD; Woiwod IP
    Curr Biol; 2008 Apr; 18(7):514-8. PubMed ID: 18394893
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Adaptive strategies in nocturnally migrating insects and songbirds: contrasting responses to wind.
    Chapman JW; Nilsson C; Lim KS; Bäckman J; Reynolds DR; Alerstam T
    J Anim Ecol; 2016 Jan; 85(1):115-24. PubMed ID: 26147535
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Compensation for wind drift in the nocturnally migrating Song Thrushes in relation to altitude and wind.
    Sinelschikova A; Vorotkov M; Bulyuk V; Bolshakov C
    Behav Processes; 2020 Aug; 177():104154. PubMed ID: 32479841
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Flight dynamics of Cory's shearwater foraging in a coastal environment.
    Paiva VH; Guilford T; Meade J; Geraldes P; Ramos JA; Garthe S
    Zoology (Jena); 2010 Jan; 113(1):47-56. PubMed ID: 20060697
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Migratory flight on the Pacific Flyway: strategies and tendencies of wind drift compensation.
    Newcombe PB; Nilsson C; Lin TY; Winner K; Bernstein G; Maji S; Sheldon D; Farnsworth A; Horton KG
    Biol Lett; 2019 Sep; 15(9):20190383. PubMed ID: 31530114
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Optimal stopover decisions under wind influence: the effects of correlated winds.
    Weber TP; Hedenström A
    J Theor Biol; 2000 Jul; 205(1):95-104. PubMed ID: 10860703
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bird orientation: compensation for wind drift in migrating raptors is age dependent.
    Thorup K; Alerstam T; Hake M; Kjellén N
    Proc Biol Sci; 2003 Aug; 270 Suppl 1(Suppl 1):S8-11. PubMed ID: 12952622
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Body condition and wind support initiate the shift of migratory direction and timing of nocturnal departure in a songbird.
    Schmaljohann H; Naef-Daenzer B
    J Anim Ecol; 2011 Nov; 80(6):1115-22. PubMed ID: 21615404
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Analyzing the effect of wind on flight: pitfalls and solutions.
    Shamoun-Baranes J; van Loon E; Liechti F; Bouten W
    J Exp Biol; 2007 Jan; 210(Pt 1):82-90. PubMed ID: 17170151
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Flight orientation behaviors promote optimal migration trajectories in high-flying insects.
    Chapman JW; Nesbit RL; Burgin LE; Reynolds DR; Smith AD; Middleton DR; Hill JK
    Science; 2010 Feb; 327(5966):682-5. PubMed ID: 20133570
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nocturnal migratory songbirds adjust their travelling direction aloft: evidence from a radiotelemetry and radar study.
    Sjöberg S; Nilsson C
    Biol Lett; 2015 Jun; 11(6):20150337. PubMed ID: 26085501
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Complex behaviour in complex terrain - Modelling bird migration in a high resolution wind field across mountainous terrain to simulate observed patterns.
    Aurbach A; Schmid B; Liechti F; Chokani N; Abhari R
    J Theor Biol; 2018 Oct; 454():126-138. PubMed ID: 29874554
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Navigating north: how body mass and winds shape avian flight behaviours across a North American migratory flyway.
    Horton KG; Van Doren BM; La Sorte FA; Fink D; Sheldon D; Farnsworth A; Kelly JF
    Ecol Lett; 2018 Jul; 21(7):1055-1064. PubMed ID: 29736919
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Influences of wind flow on stopover decisions: the case of the reed warbler Acrocephalus scirpaceus in the Western Mediterranean.
    Barriocanal C; Montserrat D; Robson D
    Int J Biometeorol; 2002 Sep; 46(4):192-6. PubMed ID: 12242475
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Are birds stressed during long-term flights? A wind-tunnel study on circulating corticosterone in the red knot.
    Jenni-Eiermann S; Hasselquist D; Lindström A; Koolhaas A; Piersma T
    Gen Comp Endocrinol; 2009; 164(2-3):101-6. PubMed ID: 19481083
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Confronting the winds: orientation and flight behaviour of roosting swifts, Apus apus.
    Bäckman J; Alerstam T
    Proc Biol Sci; 2001 May; 268(1471):1081-7. PubMed ID: 11375093
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Wind and orientation of migrating birds: a review.
    Richardson WJ
    EXS; 1991; 60():226-49. PubMed ID: 1838517
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Soaring migrants flexibly respond to sea-breeze in a migratory bottleneck: using first derivatives to identify behavioural adjustments over time.
    Becciu P; Troupin D; Dinevich L; Leshem Y; Sapir N
    Mov Ecol; 2023 Jul; 11(1):44. PubMed ID: 37501209
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Wind estimation based on thermal soaring of birds.
    Weinzierl R; Bohrer G; Kranstauber B; Fiedler W; Wikelski M; Flack A
    Ecol Evol; 2016 Dec; 6(24):8706-8718. PubMed ID: 28035262
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.