These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

420 related articles for article (PubMed ID: 12384051)

  • 41. Factors influencing phototaxis in nocturnal migrating birds.
    Zhao X; Chen M; Wu Z; Wang Z
    Zoolog Sci; 2014 Dec; 31(12):781-8. PubMed ID: 25483789
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Optimal use of wind by migrating birds: combined drift and overcompensation.
    Alerstam T
    J Theor Biol; 1979 Aug; 79(3):341-53. PubMed ID: 522498
    [No Abstract]   [Full Text] [Related]  

  • 43. A characterization of autumn nocturnal migration detected by weather surveillance radars in the northeastern USA.
    Farnsworth A; Van DOREN BM; Hochachka WM; Sheldon D; Winner K; Irvine J; Geevarghese J; Kelling S
    Ecol Appl; 2016 Apr; 26(3):752-70. PubMed ID: 27411248
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Seasonal detours by soaring migrants shaped by wind regimes along the East Atlantic Flyway.
    Vansteelant WM; Shamoun-Baranes J; van Manen W; van Diermen J; Bouten W
    J Anim Ecol; 2017 Mar; 86(2):179-191. PubMed ID: 27757959
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Ecology of tern flight in relation to wind, topography and aerodynamic theory.
    Hedenström A; Åkesson S
    Philos Trans R Soc Lond B Biol Sci; 2016 Sep; 371(1704):. PubMed ID: 27528786
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Compensation for wind drift prevails for a shorebird on a long-distance, transoceanic flight.
    Linscott JA; Navedo JG; Clements SJ; Loghry JP; Ruiz J; Ballard BM; Weegman MD; Senner NR
    Mov Ecol; 2022 Mar; 10(1):11. PubMed ID: 35255994
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Estimating updraft velocity components over large spatial scales: contrasting migration strategies of golden eagles and turkey vultures.
    Bohrer G; Brandes D; Mandel JT; Bildstein KL; Miller TA; Lanzone M; Katzner T; Maisonneuve C; Tremblay JA
    Ecol Lett; 2012 Feb; 15(2):96-103. PubMed ID: 22077120
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Calibration of magnetic and celestial compass cues in migratory birds--a review of cue-conflict experiments.
    Muheim R; Moore FR; Phillips JB
    J Exp Biol; 2006 Jan; 209(Pt 1):2-17. PubMed ID: 16354773
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Young frigatebirds learn how to compensate for wind drift.
    Wynn J; Collet J; Prudor A; Corbeau A; Padget O; Guilford T; Weimerskirch H
    Proc Biol Sci; 2020 Oct; 287(1937):20201970. PubMed ID: 33081617
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Windscape and tortuosity shape the flight costs of northern gannets.
    Amélineau F; Péron C; Lescroël A; Authier M; Provost P; Grémillet D
    J Exp Biol; 2014 Mar; 217(Pt 6):876-85. PubMed ID: 24622894
    [TBL] [Abstract][Full Text] [Related]  

  • 51. What determines probability of surviving predator attacks in bird migration?: the relative importance of vigilance and fuel load.
    Lind J
    J Theor Biol; 2004 Nov; 231(2):223-7. PubMed ID: 15380386
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Frigate birds track atmospheric conditions over months-long transoceanic flights.
    Weimerskirch H; Bishop C; Jeanniard-du-Dot T; Prudor A; Sachs G
    Science; 2016 Jul; 353(6294):74-8. PubMed ID: 27365448
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Fast and fuel efficient? Optimal use of wind by flying albatrosses.
    Weimerskirch H; Guionnet T; Martin J; Shaffer SA; Costa DP
    Proc Biol Sci; 2000 Sep; 267(1455):1869-74. PubMed ID: 11052538
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Avian sensitivity to mortality: prioritising migratory bird species for assessment at proposed wind farms.
    Desholm M
    J Environ Manage; 2009 Jun; 90(8):2672-9. PubMed ID: 19299065
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Direct and indirect drift assessment means. Part 4: a comparative study.
    Nuyttens D; Baetens K; De Schampheleire M; Sonck B
    Commun Agric Appl Biol Sci; 2008; 73(4):769-74. PubMed ID: 19226827
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Is long-distance bird flight equivalent to a high-energy fast? Body composition changes in freely migrating and captive fasting great knots.
    Battley PF; Dietz MW; Piersma T; Dekinga A; Tang S; Hulsman K
    Physiol Biochem Zool; 2001; 74(3):435-49. PubMed ID: 11331517
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Wind patterns as a potential driver in the evolution and maintenance of a North American migratory suture zone.
    McCabe JD; Olsen BJ; Hiebeler D
    Evolution; 2016 Sep; 70(9):2145-54. PubMed ID: 27435797
    [TBL] [Abstract][Full Text] [Related]  

  • 58. The gateway to Africa: What determines sea crossing performance of a migratory soaring bird at the Strait of Gibraltar?
    Santos CD; Silva JP; Muñoz AR; Onrubia A; Wikelski M
    J Anim Ecol; 2020 Jun; 89(6):1317-1328. PubMed ID: 32144757
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Urban areas affect flight altitudes of nocturnally migrating birds.
    Cabrera-Cruz SA; Smolinsky JA; McCarthy KP; Buler JJ
    J Anim Ecol; 2019 Dec; 88(12):1873-1887. PubMed ID: 31330569
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Influence of weather conditions on the flight of migrating black storks.
    Chevallier D; Handrich Y; Georges JY; Baillon F; Brossault P; Aurouet A; Le Maho Y; Massemin S
    Proc Biol Sci; 2010 Sep; 277(1695):2755-64. PubMed ID: 20427337
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 21.