BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

240 related articles for article (PubMed ID: 12384169)

  • 1. Differences between rat primary cortical neurons and astrocytes in purine release evoked by ischemic conditions.
    Parkinson FE; Sinclair CJ; Othman T; Haughey NJ; Geiger JD
    Neuropharmacology; 2002 Oct; 43(5):836-46. PubMed ID: 12384169
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Purine uptake and release in rat C6 glioma cells: nucleoside transport and purine metabolism under ATP-depleting conditions.
    Sinclair CJ; LaRivière CG; Young JD; Cass CE; Baldwin SA; Parkinson FE
    J Neurochem; 2000 Oct; 75(4):1528-38. PubMed ID: 10987833
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Stimulus- and cell-type-specific release of purines in cultured rat forebrain astrocytes and neurons.
    Parkinson FE; Xiong W
    J Neurochem; 2004 Mar; 88(5):1305-12. PubMed ID: 15009686
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Astrocytes and neurons: different roles in regulating adenosine levels.
    Parkinson FE; Xiong W; Zamzow CR
    Neurol Res; 2005 Mar; 27(2):153-60. PubMed ID: 15829178
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Adenine/ribose supply increases adenosine production and protects ATP pool in adenosine kinase-inhibited cardiac cells.
    Smolenski RT; Kalsi KK; Zych M; Kochan Z; Yacoub MH
    J Mol Cell Cardiol; 1998 Mar; 30(3):673-83. PubMed ID: 9515042
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Astrocytes affect the profile of purines released from cultured cortical neurons.
    Zamzow CR; Xiong W; Parkinson FE
    J Neurosci Res; 2008 Sep; 86(12):2641-9. PubMed ID: 18478552
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanisms of apoptosis induced by purine nucleosides in astrocytes.
    Di Iorio P; Kleywegt S; Ciccarelli R; Traversa U; Andrew CM; Crocker CE; Werstiuk ES; Rathbone MP
    Glia; 2002 May; 38(3):179-90. PubMed ID: 11968056
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Trophic effects of purines in neurons and glial cells.
    Rathbone MP; Middlemiss PJ; Gysbers JW; Andrew C; Herman MA; Reed JK; Ciccarelli R; Di Iorio P; Caciagli F
    Prog Neurobiol; 1999 Dec; 59(6):663-90. PubMed ID: 10845757
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Adenosine production by brain cells.
    Jackson EK; Kotermanski SE; Menshikova EV; Dubey RK; Jackson TC; Kochanek PM
    J Neurochem; 2017 Jun; 141(5):676-693. PubMed ID: 28294336
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Involvement of astrocytes in purine-mediated reparative processes in the brain.
    Ciccarelli R; Ballerini P; Sabatino G; Rathbone MP; D'Onofrio M; Caciagli F; Di Iorio P
    Int J Dev Neurosci; 2001 Jul; 19(4):395-414. PubMed ID: 11378300
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Homo- and heteroexchange of adenine nucleotides and nucleosides in rat hippocampal slices by the nucleoside transport system.
    Sperlágh B; Szabó G; Erdélyi F; Baranyi M; Vizi ES
    Br J Pharmacol; 2003 Jun; 139(3):623-33. PubMed ID: 12788822
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Gene expression for enzymes and transporters involved in regulating adenosine and inosine levels in rat forebrain neurons, astrocytes and C6 glioma cells.
    Parkinson FE; Ferguson J; Zamzow CR; Xiong W
    J Neurosci Res; 2006 Sep; 84(4):801-8. PubMed ID: 16862552
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Adenosine and inosine release during hypoxia in the isolated spinal cord of neonatal rats.
    Takahashi T; Otsuguro K; Ohta T; Ito S
    Br J Pharmacol; 2010 Dec; 161(8):1806-16. PubMed ID: 20735412
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Involvement of adenosine deaminase and adenosine kinase in regulating extracellular adenosine concentration in rat hippocampal slices.
    Lloyd HG; Fredholm BB
    Neurochem Int; 1995 Apr; 26(4):387-95. PubMed ID: 7633332
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dual cardiac microdialysis to assess drug-induced changes in interstitial purine metabolites: adenosine deaminase inhibition versus adenosine kinase inhibition.
    Manthei SA; Reiling CM; Van Wylen DG
    Cardiovasc Res; 1998 Jan; 37(1):171-8. PubMed ID: 9539871
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of two nucleoside transport inhibitors, dipyridamole and soluflazine, on purine release from the rat cerebral cortex.
    Phillis JW; O'Regan MH; Walter GA
    Brain Res; 1989 Mar; 481(2):309-16. PubMed ID: 2720383
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Adenosine, inosine, and guanosine protect glial cells during glucose deprivation and mitochondrial inhibition: correlation between protection and ATP preservation.
    Jurkowitz MS; Litsky ML; Browning MJ; Hohl CM
    J Neurochem; 1998 Aug; 71(2):535-48. PubMed ID: 9681443
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization of inhibitor-sensitive and -resistant adenosine transporters in cultured human fetal astrocytes.
    Gu JG; Nath A; Geiger JD
    J Neurochem; 1996 Sep; 67(3):972-7. PubMed ID: 8752102
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Activation of glutamate receptors promotes a calcium-dependent and transporter-mediated release of purines in cultured avian retinal cells: possible involvement of calcium/calmodulin-dependent protein kinase II.
    Paes-de-Carvalho R; Dias BV; Martins RA; Pereira MR; Portugal CC; Lanfredi C
    Neurochem Int; 2005 May; 46(6):441-51. PubMed ID: 15769546
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Metabolism of extracellular adenine nucleotides by cultured rat brain astrocytes.
    Lai KM; Wong PC
    J Neurochem; 1991 Nov; 57(5):1510-5. PubMed ID: 1919571
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.