These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
134 related articles for article (PubMed ID: 12384255)
41. Accumbal core: essential link in feed-forward spiraling striato-nigro-striatal in series connected loop. Ikeda H; Koshikawa N; Cools AR Neuroscience; 2013 Nov; 252():60-7. PubMed ID: 23933312 [TBL] [Abstract][Full Text] [Related]
42. Quantitative autoradiographic mapping of opioid receptors in the brain of delta-opioid receptor gene knockout mice. Goody RJ; Oakley SM; Filliol D; Kieffer BL; Kitchen I Brain Res; 2002 Jul; 945(1):9-19. PubMed ID: 12113946 [TBL] [Abstract][Full Text] [Related]
43. Diabetes alters mu and kappa opioid binding in rat brain regions: comparison with effects of food restriction. Wolinsky TD; Abrahamsen GC; Carr KD Brain Res; 1996 Oct; 738(1):167-71. PubMed ID: 8949943 [TBL] [Abstract][Full Text] [Related]
44. Increased expression of mu opioid receptors in animals susceptible to diet-induced obesity. Barnes MJ; Holmes G; Primeaux SD; York DA; Bray GA Peptides; 2006 Dec; 27(12):3292-8. PubMed ID: 16996647 [TBL] [Abstract][Full Text] [Related]
45. Analysis of dopamine receptor antagonism upon feeding elicited by mu and delta opioid agonists in the shell region of the nucleus accumbens. Ragnauth A; Znamensky V; Moroz M; Bodnar RJ Brain Res; 2000 Sep; 877(1):65-72. PubMed ID: 10980244 [TBL] [Abstract][Full Text] [Related]
46. Localization of opioid receptor antagonist [3H]-LY255582 binding sites in mouse brain: comparison with the distribution of mu, delta and kappa binding sites. Gackenheimer SL; Suter TM; Pintar JE; Quimby SJ; Wheeler WJ; Mitch CH; Gehlert DR; Statnick MA Neuropeptides; 2005 Dec; 39(6):559-67. PubMed ID: 16289278 [TBL] [Abstract][Full Text] [Related]
48. Mu opioid receptor activation enhances regulator of G protein signaling 4 association with the mu opioid receptor/G protein complex in a GTP-dependent manner. Santhappan R; Crowder AT; Gouty S; Cox BM; Côté TE J Neurochem; 2015 Oct; 135(1):76-87. PubMed ID: 26119705 [TBL] [Abstract][Full Text] [Related]
49. Up-regulation of spinal mu-opioid receptor function to activate G-protein by chronic naloxone treatment. Narita M; Mizoguchi H; Nagase H; Suzuki T; Tseng LF Brain Res; 2001 Sep; 913(2):170-3. PubMed ID: 11549382 [TBL] [Abstract][Full Text] [Related]
50. Chronic intake of a cafeteria diet and subsequent abstinence. Sex-specific effects on gene expression in the mesolimbic reward system. Ong ZY; Wanasuria AF; Lin MZ; Hiscock J; Muhlhausler BS Appetite; 2013 Jun; 65():189-99. PubMed ID: 23402719 [TBL] [Abstract][Full Text] [Related]
51. Mu-Opioid (MOP) receptor mediated G-protein signaling is impaired in specific brain regions in a rat model of schizophrenia. Szűcs E; Büki A; Kékesi G; Horváth G; Benyhe S Neurosci Lett; 2016 Apr; 619():29-33. PubMed ID: 26946106 [TBL] [Abstract][Full Text] [Related]
52. An examination of the effects of subthalamic nucleus inhibition or μ-opioid receptor stimulation on food-directed motivation in the non-deprived rat. Pratt WE; Choi E; Guy EG Behav Brain Res; 2012 May; 230(2):365-73. PubMed ID: 22391117 [TBL] [Abstract][Full Text] [Related]
53. High fat feeding is associated with increased blood pressure, sympathetic nerve activity and hypothalamic mu opioid receptors. Barnes MJ; Lapanowski K; Conley A; Rafols JA; Jen KL; Dunbar JC Brain Res Bull; 2003 Sep; 61(5):511-9. PubMed ID: 13679250 [TBL] [Abstract][Full Text] [Related]
54. Stimulation of guanosine-5'-o-(3-[35S]thio)triphosphate binding in digitonin-permeabilized C6 rat glioma cells: evidence for an organized association of mu-opioid receptors and G protein. Alt A; McFadyen IJ; Fan CD; Woods JH; Traynor JR J Pharmacol Exp Ther; 2001 Jul; 298(1):116-21. PubMed ID: 11408532 [TBL] [Abstract][Full Text] [Related]
55. Chronic morphine-induced changes in mu-opioid receptors and G proteins of different subcellular loci in rat brain. Fábián G; Bozó B; Szikszay M; Horváth G; Coscia CJ; Szücs M J Pharmacol Exp Ther; 2002 Aug; 302(2):774-80. PubMed ID: 12130743 [TBL] [Abstract][Full Text] [Related]
56. Effects of intracerebroventricular administration of beta-funaltrexamine on DAMGO-stimulated [35S]GTP-gamma-S binding in rat brain sections. Martin TJ; Sim LJ; Selley DE; deMontis MG; Childers SR Synapse; 1997 Nov; 27(3):177-82. PubMed ID: 9329153 [TBL] [Abstract][Full Text] [Related]
57. Effect of intracerebroventricular beta-funaltrexamine on mu opioid receptors in the rat brain: consideration of binding condition. Liu-Chen LY; Yang HH; Li S; Adams JU J Pharmacol Exp Ther; 1995 Jun; 273(3):1047-56. PubMed ID: 7791074 [TBL] [Abstract][Full Text] [Related]
58. Quantitative autoradiography of mu-opioid receptors in the CNS of alcohol-naive alcohol-preferring P and -nonpreferring NP rats. McBride WJ; Chernet E; McKinzie DL; Lumeng L; Li TK Alcohol; 1998 Nov; 16(4):317-23. PubMed ID: 9818984 [TBL] [Abstract][Full Text] [Related]
59. Up-regulation of central mu-opioid receptors in a model of hepatic encephalopathy: a potential mechanism for increased sensitivity to morphine in liver failure. Bergasa NV; Rothman RB; Mukerjee E; Vergalla J; Jones EA Life Sci; 2002 Feb; 70(14):1701-8. PubMed ID: 11991257 [TBL] [Abstract][Full Text] [Related]
60. Neurokinin-1 versus mu-opioid receptor binding in rat nucleus tractus solitarius after single and recurrent intermittent hypoxia. Laferrière A; Liu JK; Moss IR Brain Res Bull; 2003 Jan; 59(4):307-13. PubMed ID: 12464404 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]