These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
172 related articles for article (PubMed ID: 12384290)
1. Identification of genes enriched in rice roots of the local nitrate treatment and their expression patterns in split-root treatment. Wang X; Wu P; Xia M; Wu Z; Chen Q; Liu F Gene; 2002 Sep; 297(1-2):93-102. PubMed ID: 12384290 [TBL] [Abstract][Full Text] [Related]
2. Cell Type-Specific Gene Expression Analyses by RNA Sequencing Reveal Local High Nitrate-Triggered Lateral Root Initiation in Shoot-Borne Roots of Maize by Modulating Auxin-Related Cell Cycle Regulation. Yu P; Eggert K; von Wirén N; Li C; Hochholdinger F Plant Physiol; 2015 Sep; 169(1):690-704. PubMed ID: 26198256 [TBL] [Abstract][Full Text] [Related]
3. MADS-box transcription factor OsMADS25 regulates root development through affection of nitrate accumulation in rice. Yu C; Liu Y; Zhang A; Su S; Yan A; Huang L; Ali I; Liu Y; Forde BG; Gan Y PLoS One; 2015; 10(8):e0135196. PubMed ID: 26258667 [TBL] [Abstract][Full Text] [Related]
4. Identification of early ammonium nitrate-responsive genes in rice roots. Yang HC; Kan CC; Hung TH; Hsieh PH; Wang SY; Hsieh WY; Hsieh MH Sci Rep; 2017 Dec; 7(1):16885. PubMed ID: 29203827 [TBL] [Abstract][Full Text] [Related]
5. Spatio-temporal dynamics in global rice gene expression (Oryza sativa L.) in response to high ammonium stress. Sun L; Di D; Li G; Kronzucker HJ; Shi W J Plant Physiol; 2017 May; 212():94-104. PubMed ID: 28282528 [TBL] [Abstract][Full Text] [Related]
6. Transcriptomic analysis highlights reciprocal interactions of urea and nitrate for nitrogen acquisition by maize roots. Zanin L; Zamboni A; Monte R; Tomasi N; Varanini Z; Cesco S; Pinton R Plant Cell Physiol; 2015 Mar; 56(3):532-48. PubMed ID: 25524070 [TBL] [Abstract][Full Text] [Related]
7. Auxin distribution is differentially affected by nitrate in roots of two rice cultivars differing in responsiveness to nitrogen. Song W; Sun H; Li J; Gong X; Huang S; Zhu X; Zhang Y; Xu G Ann Bot; 2013 Nov; 112(7):1383-93. PubMed ID: 24095838 [TBL] [Abstract][Full Text] [Related]
8. A Transcription Factor, OsMADS57, Regulates Long-Distance Nitrate Transport and Root Elongation. Huang S; Liang Z; Chen S; Sun H; Fan X; Wang C; Xu G; Zhang Y Plant Physiol; 2019 Jun; 180(2):882-895. PubMed ID: 30886113 [TBL] [Abstract][Full Text] [Related]
9. Strigolactones are involved in phosphate- and nitrate-deficiency-induced root development and auxin transport in rice. Sun H; Tao J; Liu S; Huang S; Chen S; Xie X; Yoneyama K; Zhang Y; Xu G J Exp Bot; 2014 Dec; 65(22):6735-46. PubMed ID: 24596173 [TBL] [Abstract][Full Text] [Related]
10. Overexpression of Nitrate Transporter Naz M; Luo B; Guo X; Li B; Chen J; Fan X Genes (Basel); 2019 Apr; 10(4):. PubMed ID: 30970675 [TBL] [Abstract][Full Text] [Related]
11. OsNRT2.4 encodes a dual-affinity nitrate transporter and functions in nitrate-regulated root growth and nitrate distribution in rice. Wei J; Zheng Y; Feng H; Qu H; Fan X; Yamaji N; Ma JF; Xu G J Exp Bot; 2018 Feb; 69(5):1095-1107. PubMed ID: 29385597 [TBL] [Abstract][Full Text] [Related]
12. Nitrate signals determine the sensing of nitrogen through differential expression of genes involved in nitrogen uptake and assimilation in finger millet. Gupta AK; Gaur VS; Gupta S; Kumar A Funct Integr Genomics; 2013 Jun; 13(2):179-90. PubMed ID: 23435937 [TBL] [Abstract][Full Text] [Related]
13. OsNAR2.2 plays a vital role in the root growth and development by promoting nitrate uptake and signaling in rice. Xu N; Yu B; Chen R; Li S; Zhang G; Huang J Plant Physiol Biochem; 2020 Apr; 149():159-169. PubMed ID: 32070909 [TBL] [Abstract][Full Text] [Related]
14. The calcium sensor OsCBL1 modulates nitrate signaling to regulate seedling growth in rice. Yang J; Deng X; Wang X; Wang J; Du S; Li Y PLoS One; 2019; 14(11):e0224962. PubMed ID: 31697744 [TBL] [Abstract][Full Text] [Related]
15. Genome-wide transcriptome analysis of expression in rice seedling roots in response to supplemental nitrogen. Chandran AK; Priatama RA; Kumar V; Xuan Y; Je BI; Kim CM; Jung KH; Han CD J Plant Physiol; 2016 Aug; 200():62-75. PubMed ID: 27340859 [TBL] [Abstract][Full Text] [Related]
16. Early molecular events associated with nitrogen deficiency in rice seedling roots. Hsieh PH; Kan CC; Wu HY; Yang HC; Hsieh MH Sci Rep; 2018 Aug; 8(1):12207. PubMed ID: 30111825 [TBL] [Abstract][Full Text] [Related]
17. OsSIZ1, a SUMO E3 Ligase Gene, is Involved in the Regulation of the Responses to Phosphate and Nitrogen in Rice. Wang H; Sun R; Cao Y; Pei W; Sun Y; Zhou H; Wu X; Zhang F; Luo L; Shen Q; Xu G; Sun S Plant Cell Physiol; 2015 Dec; 56(12):2381-95. PubMed ID: 26615033 [TBL] [Abstract][Full Text] [Related]
18. Response to zinc deficiency of two rice lines with contrasting tolerance is determined by root growth maintenance and organic acid exudation rates, and not by zinc-transporter activity. Widodo B; Broadley MR; Rose T; Frei M; Pariasca-Tanaka J; Yoshihashi T; Thomson M; Hammond JP; Aprile A; Close TJ; Ismail AM; Wissuwa M New Phytol; 2010 Apr; 186(2):400-14. PubMed ID: 20100202 [TBL] [Abstract][Full Text] [Related]
19. Auxin-mediated nitrate signalling by NRT1.1 participates in the adaptive response of Arabidopsis root architecture to the spatial heterogeneity of nitrate availability. Mounier E; Pervent M; Ljung K; Gojon A; Nacry P Plant Cell Environ; 2014 Jan; 37(1):162-74. PubMed ID: 23731054 [TBL] [Abstract][Full Text] [Related]