These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
190 related articles for article (PubMed ID: 12384315)
21. In vivo and in vitro elimination of aliphatic polyanhydrides. Domb AJ; Nudelman R Biomaterials; 1995 Mar; 16(4):319-23. PubMed ID: 7772672 [TBL] [Abstract][Full Text] [Related]
26. Elastomeric and degradable polyanhydride network polymers by step-growth thiol-ene photopolymerization. Shipp DA; McQuinn CW; Rutherglen BG; McBath RA Chem Commun (Camb); 2009 Nov; (42):6415-7. PubMed ID: 19841794 [TBL] [Abstract][Full Text] [Related]
27. Erosion of a new family of biodegradable polyanhydrides. Shieh L; Tamada J; Chen I; Pang J; Domb A; Langer R J Biomed Mater Res; 1994 Dec; 28(12):1465-75. PubMed ID: 7876286 [TBL] [Abstract][Full Text] [Related]
28. Surface Eroding, Semicrystalline Polyanhydrides via Thiol-Ene "Click" Photopolymerization. Poetz KL; Mohammed HS; Shipp DA Biomacromolecules; 2015 May; 16(5):1650-9. PubMed ID: 25867183 [TBL] [Abstract][Full Text] [Related]
29. Polyanhydrides as localized drug delivery carrier: an update. Jain JP; Chitkara D; Kumar N Expert Opin Drug Deliv; 2008 Aug; 5(8):889-907. PubMed ID: 18712998 [TBL] [Abstract][Full Text] [Related]
30. Synthesis and characterization of polyanhydride for local BCNU delivery carriers. Kim MS; Seo KS; Seong HS; Cho SH; Lee HB; Hong KD; Kim SK; Khang G Biomed Mater Eng; 2005; 15(3):229-38. PubMed ID: 15912003 [TBL] [Abstract][Full Text] [Related]
31. Raman Microspectroscopy Study of the Hydrolytic Degradation of Polyanhydride Network Polymers. Bian L; Mohammed HS; Shipp DA; Goulet PJG Langmuir; 2019 May; 35(19):6387-6392. PubMed ID: 30998022 [TBL] [Abstract][Full Text] [Related]
32. Role of polyanhydrides as localized drug carriers. Jain JP; Modi S; Domb AJ; Kumar N J Control Release; 2005 Apr; 103(3):541-63. PubMed ID: 15820403 [TBL] [Abstract][Full Text] [Related]
33. Mechanisms of polymer degradation and erosion. Göpferich A Biomaterials; 1996 Jan; 17(2):103-14. PubMed ID: 8624387 [TBL] [Abstract][Full Text] [Related]
34. Mathematical modeling of bioerodible, polymeric drug delivery systems. Siepmann J; Göpferich A Adv Drug Deliv Rev; 2001 Jun; 48(2-3):229-47. PubMed ID: 11369084 [TBL] [Abstract][Full Text] [Related]
36. A unified mathematical model for the prediction of controlled release from surface and bulk eroding polymer matrices. Rothstein SN; Federspiel WJ; Little SR Biomaterials; 2009 Mar; 30(8):1657-64. PubMed ID: 19101031 [TBL] [Abstract][Full Text] [Related]
37. Molecular weight-dependent degradation and drug release of surface-eroding poly(ethylene carbonate). Bohr A; Wang Y; Harmankaya N; Water JJ; Baldursdottír S; Almdal K; Beck-Broichsitter M Eur J Pharm Biopharm; 2017 Jun; 115():140-148. PubMed ID: 28238837 [TBL] [Abstract][Full Text] [Related]
38. Hydroxy fatty acid based polyanhydride as drug delivery system: synthesis, characterization, in vitro degradation, drug release, and biocompatibility. Jain JP; Modi S; Kumar N J Biomed Mater Res A; 2008 Mar; 84(3):740-52. PubMed ID: 17635032 [TBL] [Abstract][Full Text] [Related]
39. The development of polyanhydrides for drug delivery applications. Tamada J; Langer R J Biomater Sci Polym Ed; 1992; 3(4):315-53. PubMed ID: 1350734 [TBL] [Abstract][Full Text] [Related]
40. A model for hydrolytic degradation and erosion of biodegradable polymers. Sevim K; Pan J Acta Biomater; 2018 Jan; 66():192-199. PubMed ID: 29128536 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]