These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 12384460)

  • 1. Morphometry and strain distribution of the C57BL/6 mouse aorta.
    Guo X; Kono Y; Mattrey R; Kassab GS
    Am J Physiol Heart Circ Physiol; 2002 Nov; 283(5):H1829-37. PubMed ID: 12384460
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Variation of mechanical properties along the length of the aorta in C57bl/6 mice.
    Guo X; Kassab GS
    Am J Physiol Heart Circ Physiol; 2003 Dec; 285(6):H2614-22. PubMed ID: 14613915
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Axial nonuniformity of geometric and mechanical properties of mouse aorta is increased during postnatal growth.
    Huang Y; Guo X; Kassab GS
    Am J Physiol Heart Circ Physiol; 2006 Feb; 290(2):H657-64. PubMed ID: 16172154
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The flow field along the entire length of mouse aorta and primary branches.
    Huo Y; Guo X; Kassab GS
    Ann Biomed Eng; 2008 May; 36(5):685-99. PubMed ID: 18299987
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dimensions and mechanical properties of porcine aortic segments determined by combined impedance planimetry and high-frequency ultrasound.
    Storkholm JH; Villadsen GE; Krogh K; Jørgensen CS; Gregersen H
    Med Biol Eng Comput; 1997 Jan; 35(1):21-6. PubMed ID: 9136186
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Distribution of stress and strain along the porcine aorta and coronary arterial tree.
    Guo X; Kassab GS
    Am J Physiol Heart Circ Physiol; 2004 Jun; 286(6):H2361-8. PubMed ID: 15148060
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Are geometrical and structural variations along the length of the aorta governed by a principle of "optimal mechanical operation"?
    Rachev A; Greenwald S; Shazly T
    J Biomech Eng; 2013 Aug; 135(8):81006. PubMed ID: 23722287
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of elastin haploinsufficiency on the mechanical behavior of mouse arteries.
    Wagenseil JE; Nerurkar NL; Knutsen RH; Okamoto RJ; Li DY; Mecham RP
    Am J Physiol Heart Circ Physiol; 2005 Sep; 289(3):H1209-17. PubMed ID: 15863465
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transmural strain distribution in the blood vessel wall.
    Guo X; Lu X; Kassab GS
    Am J Physiol Heart Circ Physiol; 2005 Feb; 288(2):H881-6. PubMed ID: 15650158
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Regional distribution of layer-specific circumferential residual deformations and opening angles in the porcine aorta.
    Sokolis DP
    J Biomech; 2019 Nov; 96():109335. PubMed ID: 31540821
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Relation of nitrite to structural and mechanical adaptation of arteries during postnatal development.
    Huang Y; Guo X; Kassab GS
    Ann Biomed Eng; 2008 Dec; 36(12):2019-27. PubMed ID: 18807188
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of osmolarity on the zero-stress state and mechanical properties of aorta.
    Guo X; Lanir Y; Kassab GS
    Am J Physiol Heart Circ Physiol; 2007 Oct; 293(4):H2328-34. PubMed ID: 17573459
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High Resolution Strain Analysis Comparing Aorta and Abdominal Aortic Aneurysm with Real Time Three Dimensional Speckle Tracking Ultrasound.
    Derwich W; Wittek A; Pfister K; Nelson K; Bereiter-Hahn J; Fritzen CP; Blase C; Schmitz-Rixen T
    Eur J Vasc Endovasc Surg; 2016 Feb; 51(2):187-93. PubMed ID: 26391962
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Direct measurement of transverse residual strains in aorta.
    Han HC; Fung YC
    Am J Physiol; 1996 Feb; 270(2 Pt 2):H750-9. PubMed ID: 8779853
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Extensibility and Distensibility of the Thoracic Aorta in Patients with Aneurysm.
    de Beaufort HW; Nauta FJ; Conti M; Cellitti E; Trentin C; Faggiano E; van Bogerijen GH; Figueroa CA; Moll FL; van Herwaarden JA; Auricchio F; Trimarchi S
    Eur J Vasc Endovasc Surg; 2017 Feb; 53(2):199-205. PubMed ID: 28027889
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Remodelling of the zero-stress state and residual strains in apoE-deficient mouse aorta.
    Gregersen H; Zhao J; Lu X; Zhou J; Falk E
    Biorheology; 2007; 44(2):75-89. PubMed ID: 17538200
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Stress and strain distribution in hypertensive and normotensive rat aorta considering residual strain.
    Matsumoto T; Hayashi K
    J Biomech Eng; 1996 Feb; 118(1):62-73. PubMed ID: 8833076
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Significant material property differences between the porcine ascending aorta and aortic sinuses.
    Gundiah N; Matthews PB; Karimi R; Azadani A; Guccione J; Guy TS; Saloner D; Tseng EE
    J Heart Valve Dis; 2008 Nov; 17(6):606-13. PubMed ID: 19137790
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of aneurysm on the directional, regional, and layer distribution of residual strains in ascending thoracic aorta.
    Sokolis DP
    J Mech Behav Biomed Mater; 2015 Jun; 46():229-43. PubMed ID: 25828156
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Novel Methodology for Characterizing Regional Variations in the Material Properties of Murine Aortas.
    Bersi MR; Bellini C; Di Achille P; Humphrey JD; Genovese K; Avril S
    J Biomech Eng; 2016 Jul; 138(7):0710051-07100515. PubMed ID: 27210500
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.