BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

211 related articles for article (PubMed ID: 12384487)

  • 1. Dynamical description of sinoatrial node pacemaking: improved mathematical model for primary pacemaker cell.
    Kurata Y; Hisatome I; Imanishi S; Shibamoto T
    Am J Physiol Heart Circ Physiol; 2002 Nov; 283(5):H2074-101. PubMed ID: 12384487
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sustained inward current and pacemaker activity of mammalian sinoatrial node.
    Zhang H; Holden AV; Boyett MR
    J Cardiovasc Electrophysiol; 2002 Aug; 13(8):809-12. PubMed ID: 12212702
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Roles of L-type Ca2+ and delayed-rectifier K+ currents in sinoatrial node pacemaking: insights from stability and bifurcation analyses of a mathematical model.
    Kurata Y; Hisatome I; Imanishi S; Shibamoto T
    Am J Physiol Heart Circ Physiol; 2003 Dec; 285(6):H2804-19. PubMed ID: 12919936
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Single cells isolated from human sinoatrial node: action potentials and numerical reconstruction of pacemaker current.
    Verkerk AO; van Borren MM; Peters RJ; Broekhuis E; Lam KY; Coronel R; de Bakker JM; Tan HL; Wilders R
    Annu Int Conf IEEE Eng Med Biol Soc; 2007; 2007():904-7. PubMed ID: 18002103
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Contribution of small conductance K
    Torrente AG; Zhang R; Wang H; Zaini A; Kim B; Yue X; Philipson KD; Goldhaber JI
    J Physiol; 2017 Jun; 595(12):3847-3865. PubMed ID: 28346695
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Synergism of coupled subsarcolemmal Ca2+ clocks and sarcolemmal voltage clocks confers robust and flexible pacemaker function in a novel pacemaker cell model.
    Maltsev VA; Lakatta EG
    Am J Physiol Heart Circ Physiol; 2009 Mar; 296(3):H594-615. PubMed ID: 19136600
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Roles of sarcoplasmic reticulum Ca2+ cycling and Na+/Ca2+ exchanger in sinoatrial node pacemaking: insights from bifurcation analysis of mathematical models.
    Kurata Y; Hisatome I; Shibamoto T
    Am J Physiol Heart Circ Physiol; 2012 Jun; 302(11):H2285-300. PubMed ID: 22447940
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Computational model of rabbit SA node pacemaker activity probed with action potential and calcium transient clamp.
    van Borren MM; Zegers JG; Verkerk AO; Wilders R
    Annu Int Conf IEEE Eng Med Biol Soc; 2007; 2007():156-9. PubMed ID: 18001912
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Role of the 293b-sensitive, slowly activating delayed rectifier potassium current, i(Ks), in pacemaker activity of rabbit isolated sino-atrial node cells.
    Lei M; Cooper PJ; Camelliti P; Kohl P
    Cardiovasc Res; 2002 Jan; 53(1):68-79. PubMed ID: 11744014
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A mathematical model of a rabbit sinoatrial node cell.
    Demir SS; Clark JW; Murphey CR; Giles WR
    Am J Physiol; 1994 Mar; 266(3 Pt 1):C832-52. PubMed ID: 8166247
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sustained inward current during pacemaker depolarization in mammalian sinoatrial node cells.
    Mitsuiye T; Shinagawa Y; Noma A
    Circ Res; 2000 Jul; 87(2):88-91. PubMed ID: 10903990
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sinoatrial node pacemaker activity requires Ca(2+)/calmodulin-dependent protein kinase II activation.
    Vinogradova TM; Zhou YY; Bogdanov KY; Yang D; Kuschel M; Cheng H; Xiao RP
    Circ Res; 2000 Oct; 87(9):760-7. PubMed ID: 11055979
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The ionic currents underlying pacemaker activity in rabbit sino-atrial node: experimental results and computer simulations.
    Brown HF; Kimura J; Noble D; Noble SJ; Taupignon A
    Proc R Soc Lond B Biol Sci; 1984 Sep; 222(1228):329-47. PubMed ID: 6149555
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ion currents underlying sinoatrial node pacemaker activity: a new single cell mathematical model.
    Dokos S; Celler B; Lovell N
    J Theor Biol; 1996 Aug; 181(3):245-72. PubMed ID: 8869126
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ionic mechanisms of pacemaker activity in spontaneously contracting atrial HL-1 cells.
    Yang Z; Murray KT
    J Cardiovasc Pharmacol; 2011 Jan; 57(1):28-36. PubMed ID: 20881602
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Regional difference in dynamical property of sinoatrial node pacemaking: role of na+ channel current.
    Kurata Y; Matsuda H; Hisatome I; Shibamoto T
    Biophys J; 2008 Jul; 95(2):951-77. PubMed ID: 18390617
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The electrophysiological properties of spontaneously beating pacemaker cells isolated from mouse sinoatrial node.
    Cho HS; Takano M; Noma A
    J Physiol; 2003 Jul; 550(Pt 1):169-80. PubMed ID: 12879867
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electrophysiological heterogeneity of pacemaker cells in the rabbit intercaval region, including the SA node: insights from recording multiple ion currents in each cell.
    Monfredi O; Tsutsui K; Ziman B; Stern MD; Lakatta EG; Maltsev VA
    Am J Physiol Heart Circ Physiol; 2018 Mar; 314(3):H403-H414. PubMed ID: 28916636
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Physiological Roles of the Rapidly Activated Delayed Rectifier K
    Hu W; Clark RB; Giles WR; Shibata E; Zhang H
    Int J Mol Sci; 2021 Apr; 22(9):. PubMed ID: 33946248
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ionic basis of ryanodine's negative chronotropic effect on pacemaker cells isolated from the sinoatrial node.
    Li J; Qu J; Nathan RD
    Am J Physiol; 1997 Nov; 273(5):H2481-9. PubMed ID: 9374788
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.