BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

285 related articles for article (PubMed ID: 12384601)

  • 1. Slipped-strand DNAs formed by long (CAG)*(CTG) repeats: slipped-out repeats and slip-out junctions.
    Pearson CE; Tam M; Wang YH; Montgomery SE; Dar AC; Cleary JD; Nichol K
    Nucleic Acids Res; 2002 Oct; 30(20):4534-47. PubMed ID: 12384601
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Slipped (CTG).(CAG) repeats of the myotonic dystrophy locus: surface probing with anti-DNA antibodies.
    Tam M; Erin Montgomery S; Kekis M; Stollar BD; Price GB; Pearson CE
    J Mol Biol; 2003 Sep; 332(3):585-600. PubMed ID: 12963369
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Interconverting conformations of slipped-DNA junctions formed by trinucleotide repeats affect repair outcome.
    Slean MM; Reddy K; Wu B; Nichol Edamura K; Kekis M; Nelissen FH; Aspers RL; Tessari M; Schärer OD; Wijmenga SS; Pearson CE
    Biochemistry; 2013 Feb; 52(5):773-85. PubMed ID: 23339280
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Human MSH2 binds to trinucleotide repeat DNA structures associated with neurodegenerative diseases.
    Pearson CE; Ewel A; Acharya S; Fishel RA; Sinden RR
    Hum Mol Genet; 1997 Jul; 6(7):1117-23. PubMed ID: 9215683
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Detection of slipped-DNAs at the trinucleotide repeats of the myotonic dystrophy type I disease locus in patient tissues.
    Axford MM; Wang YH; Nakamori M; Zannis-Hadjopoulos M; Thornton CA; Pearson CE
    PLoS Genet; 2013; 9(12):e1003866. PubMed ID: 24367268
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structural analysis of slipped-strand DNA (S-DNA) formed in (CTG)n. (CAG)n repeats from the myotonic dystrophy locus.
    Pearson CE; Wang YH; Griffith JD; Sinden RR
    Nucleic Acids Res; 1998 Feb; 26(3):816-23. PubMed ID: 9443975
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Isolated short CTG/CAG DNA slip-outs are repaired efficiently by hMutSbeta, but clustered slip-outs are poorly repaired.
    Panigrahi GB; Slean MM; Simard JP; Gileadi O; Pearson CE
    Proc Natl Acad Sci U S A; 2010 Jul; 107(28):12593-8. PubMed ID: 20571119
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Absence of MutSβ leads to the formation of slipped-DNA for CTG/CAG contractions at primate replication forks.
    Slean MM; Panigrahi GB; Castel AL; Pearson AB; Tomkinson AE; Pearson CE
    DNA Repair (Amst); 2016 Jun; 42():107-18. PubMed ID: 27155933
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Slipped (CTG)*(CAG) repeats can be correctly repaired, escape repair or undergo error-prone repair.
    Panigrahi GB; Lau R; Montgomery SE; Leonard MR; Pearson CE
    Nat Struct Mol Biol; 2005 Aug; 12(8):654-62. PubMed ID: 16025129
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Conformational and migrational dynamics of slipped-strand DNA three-way junctions containing trinucleotide repeats.
    Hu T; Morten MJ; Magennis SW
    Nat Commun; 2021 Jan; 12(1):204. PubMed ID: 33420051
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Conformational energetics of stable and metastable states formed by DNA triplet repeat oligonucleotides: implications for triplet expansion diseases.
    Völker J; Makube N; Plum GE; Klump HH; Breslauer KJ
    Proc Natl Acad Sci U S A; 2002 Nov; 99(23):14700-5. PubMed ID: 12417759
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Alternative structures in duplex DNA formed within the trinucleotide repeats of the myotonic dystrophy and fragile X loci.
    Pearson CE; Sinden RR
    Biochemistry; 1996 Apr; 35(15):5041-53. PubMed ID: 8664297
    [TBL] [Abstract][Full Text] [Related]  

  • 13. FAN1 exo- not endo-nuclease pausing on disease-associated slipped-DNA repeats: A mechanism of repeat instability.
    Deshmukh AL; Caron MC; Mohiuddin M; Lanni S; Panigrahi GB; Khan M; Engchuan W; Shum N; Faruqui A; Wang P; Yuen RKC; Nakamori M; Nakatani K; Masson JY; Pearson CE
    Cell Rep; 2021 Dec; 37(10):110078. PubMed ID: 34879276
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Replication restart: a pathway for (CTG).(CAG) repeat deletion in Escherichia coli.
    Kim SH; Pytlos MJ; Sinden RR
    Mutat Res; 2006 Mar; 595(1-2):5-22. PubMed ID: 16472829
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Stability of intrastrand hairpin structures formed by the CAG/CTG class of DNA triplet repeats associated with neurological diseases.
    Petruska J; Arnheim N; Goodman MF
    Nucleic Acids Res; 1996 Jun; 24(11):1992-8. PubMed ID: 8668527
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Type III intermediate filament proteins interact with four-way junction DNA and facilitate its cleavage by the junction-resolving enzyme T7 endonuclease I.
    Li G; Tolstonog GV; Sabasch M; Traub P
    DNA Cell Biol; 2003 Apr; 22(4):261-91. PubMed ID: 12823903
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fidelity of primate cell repair of a double-strand break within a (CTG).(CAG) tract. Effect of slipped DNA structures.
    Marcadier JL; Pearson CE
    J Biol Chem; 2003 Sep; 278(36):33848-56. PubMed ID: 12807901
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Involvement of the nucleotide excision repair protein UvrA in instability of CAG*CTG repeat sequences in Escherichia coli.
    Oussatcheva EA; Hashem VI; Zou Y; Sinden RR; Potaman VN
    J Biol Chem; 2001 Aug; 276(33):30878-84. PubMed ID: 11413147
    [TBL] [Abstract][Full Text] [Related]  

  • 19. RNase H1 can catalyze RNA/DNA hybrid formation and cleavage with stable hairpin or duplex DNA oligomers.
    Li J; Wartell RM
    Biochemistry; 1998 Apr; 37(15):5154-61. PubMed ID: 9548746
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Interruptions in the triplet repeats of SCA1 and FRAXA reduce the propensity and complexity of slipped strand DNA (S-DNA) formation.
    Pearson CE; Eichler EE; Lorenzetti D; Kramer SF; Zoghbi HY; Nelson DL; Sinden RR
    Biochemistry; 1998 Feb; 37(8):2701-8. PubMed ID: 9485421
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.