BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

285 related articles for article (PubMed ID: 12384601)

  • 21. MutSβ promotes trinucleotide repeat expansion by recruiting DNA polymerase β to nascent (CAG)n or (CTG)n hairpins for error-prone DNA synthesis.
    Guo J; Gu L; Leffak M; Li GM
    Cell Res; 2016 Jul; 26(7):775-86. PubMed ID: 27255792
    [TBL] [Abstract][Full Text] [Related]  

  • 22. DNA CTG triplet repeats involved in dynamic mutations of neurologically related gene sequences form stable duplexes.
    Smith GK; Jie J; Fox GE; Gao X
    Nucleic Acids Res; 1995 Nov; 23(21):4303-11. PubMed ID: 7501450
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Triplet repeat DNA structures and human genetic disease: dynamic mutations from dynamic DNA.
    Sinden RR; Potaman VN; Oussatcheva EA; Pearson CE; Lyubchenko YL; Shlyakhtenko LS
    J Biosci; 2002 Feb; 27(1 Suppl 1):53-65. PubMed ID: 11927777
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Single stand targeted triplex formation: physicochemical and biochemical properties of foldback triplexes.
    Kandimalla ER; Manning A; Agrawal S
    J Biomol Struct Dyn; 1996 Aug; 14(1):79-90. PubMed ID: 8877564
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Incision-dependent and error-free repair of (CAG)(n)/(CTG)(n) hairpins in human cell extracts.
    Hou C; Chan NL; Gu L; Li GM
    Nat Struct Mol Biol; 2009 Aug; 16(8):869-75. PubMed ID: 19597480
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Solution structures of the Huntington's disease DNA triplets, (CAG)n.
    Mariappan SV; Silks LA; Chen X; Springer PA; Wu R; Moyzis RK; Bradbury EM; Garcia AE; Gupta G
    J Biomol Struct Dyn; 1998 Feb; 15(4):723-44. PubMed ID: 9514249
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Slipped strand DNA structures.
    Sinden RR; Pytlos-Sinden MJ; Potaman VN
    Front Biosci; 2007 Sep; 12():4788-99. PubMed ID: 17569609
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The purine-rich trinucleotide repeat sequences d(CAG)15 and d(GAC)15 form hairpins.
    Yu A; Dill J; Mitas M
    Nucleic Acids Res; 1995 Oct; 23(20):4055-7. PubMed ID: 7479064
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Sequence length dictates repeated CAG folding in three-way junctions.
    Degtyareva NN; Barber CA; Reddish MJ; Petty JT
    Biochemistry; 2011 Feb; 50(4):458-65. PubMed ID: 21142085
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Binding of actinomycin D to DNA oligomers of CXG trinucleotide repeats.
    Chen FM
    Biochemistry; 1998 Mar; 37(11):3955-64. PubMed ID: 9521717
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Structure and dynamics in DNA looped domains: CAG triplet repeat sequence dynamics probed by 2-aminopurine fluorescence.
    Lee BJ; Barch M; Castner EW; Völker J; Breslauer KJ
    Biochemistry; 2007 Sep; 46(38):10756-66. PubMed ID: 17718541
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Hairpin properties of single-stranded DNA containing a GC-rich triplet repeat: (CTG)15.
    Mitas M; Yu A; Dill J; Kamp TJ; Chambers EJ; Haworth IS
    Nucleic Acids Res; 1995 Mar; 23(6):1050-9. PubMed ID: 7731793
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Coordinated processing of 3' slipped (CAG)n/(CTG)n hairpins by DNA polymerases β and δ preferentially induces repeat expansions.
    Chan NL; Guo J; Zhang T; Mao G; Hou C; Yuan F; Huang J; Zhang Y; Wu J; Gu L; Li GM
    J Biol Chem; 2013 May; 288(21):15015-22. PubMed ID: 23585564
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Replication-dependent instability at (CTG) x (CAG) repeat hairpins in human cells.
    Liu G; Chen X; Bissler JJ; Sinden RR; Leffak M
    Nat Chem Biol; 2010 Sep; 6(9):652-9. PubMed ID: 20676085
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Influence of hairpins on template reannealing at trinucleotide repeat duplexes: a model for slipped DNA.
    Gacy AM; McMurray CT
    Biochemistry; 1998 Jun; 37(26):9426-34. PubMed ID: 9649325
    [TBL] [Abstract][Full Text] [Related]  

  • 36. DNA slip-outs cause RNA polymerase II arrest in vitro: potential implications for genetic instability.
    Salinas-Rios V; Belotserkovskii BP; Hanawalt PC
    Nucleic Acids Res; 2011 Sep; 39(17):7444-54. PubMed ID: 21666257
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Structural roles of CTG repeats in slippage expansion during DNA replication.
    Chi LM; Lam SL
    Nucleic Acids Res; 2005; 33(5):1604-17. PubMed ID: 15767285
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Dynamics of strand slippage in DNA hairpins formed by CAG repeats: roles of sequence parity and trinucleotide interrupts.
    Xu P; Pan F; Roland C; Sagui C; Weninger K
    Nucleic Acids Res; 2020 Mar; 48(5):2232-2245. PubMed ID: 31974547
    [TBL] [Abstract][Full Text] [Related]  

  • 39. p53 and recombination intermediates: role of tetramerization at DNA junctions in complex formation and exonucleolytic degradation.
    Janz C; Süsse S; Wiesmüller L
    Oncogene; 2002 Mar; 21(14):2130-40. PubMed ID: 11948396
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Binding and incision activities of UvrABC excinuclease on slipped DNA intermediates that generate frameshift mutations.
    Delagoutte E; Bertrand-Burggraf E; Lambert IB; Fuchs RP
    J Mol Biol; 1996 Apr; 257(5):970-6. PubMed ID: 8632479
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.