BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

85 related articles for article (PubMed ID: 12385248)

  • 41. [Evaluation of salt tolerance in Nicotiana tabacum plants bearing an antisense suppressor of the proline dehydrogenase gene].
    Kolodiazhnaia IaS; Titov SE; Kochetov AV; Komarova ML; Romanova AV; Koval' VS; Shumnyĭ VK
    Genetika; 2006 Feb; 42(2):278-81. PubMed ID: 16583712
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Characterization of resistance gene analogs with a nucleotide binding site isolated from a triploid white poplar.
    Zhang Q; Zhang ZY; Lin SZ; Zheng HQ; Lin YZ; An XM; Li Y; Li HX
    Plant Biol (Stuttg); 2008 May; 10(3):310-22. PubMed ID: 18426478
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Overexpression of a new rice vacuolar antiporter regulating protein OsARP improves salt tolerance in tobacco.
    Uddin MI; Qi Y; Yamada S; Shibuya I; Deng XP; Kwak SS; Kaminaka H; Tanaka K
    Plant Cell Physiol; 2008 Jun; 49(6):880-90. PubMed ID: 18420595
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Involvement of hydrogen peroxide and nitric oxide in salt resistance in the calluses from Populus euphratica.
    Zhang F; Wang Y; Yang Y; Wu H; Wang D; Liu J
    Plant Cell Environ; 2007 Jul; 30(7):775-85. PubMed ID: 17547650
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Phytoextraction potential of wild type and 35S-gshI transgenic poplar trees (Populus x Canescens) for environmental pollutants herbicide paraquat, salt sodium, zinc sulfate and nitric oxide in vitro.
    Gyulai G; Bittsánszky A; Szabó Z; Waters L; Gullner G; Kampfl G; Heltai G; Komíves T
    Int J Phytoremediation; 2014; 16(4):379-96. PubMed ID: 24912238
    [TBL] [Abstract][Full Text] [Related]  

  • 46. The Arabidopsis basic leucine zipper transcription factor AtbZIP24 regulates complex transcriptional networks involved in abiotic stress resistance.
    Yang O; Popova OV; Süthoff U; Lüking I; Dietz KJ; Golldack D
    Gene; 2009 May; 436(1-2):45-55. PubMed ID: 19248824
    [TBL] [Abstract][Full Text] [Related]  

  • 47. [Introduce Tagsk1 into salt-sensitive callus to improve the capacity of salt-tolerance by micropartical bombardment].
    Xu T; Zhao BC; Ge RC; Shen YZ; Huang ZJ
    Sheng Wu Gong Cheng Xue Bao; 2006 Mar; 22(2):211-4. PubMed ID: 16607945
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Soil persistence of DNA from transgenic poplar.
    Bonadei M; Balestrazzi A; Frigerio B; Carbonera D
    Environ Biosafety Res; 2009; 8(2):79-86. PubMed ID: 19833075
    [TBL] [Abstract][Full Text] [Related]  

  • 49. PagWOX11/12a activates PagCYP736A12 gene that facilitates salt tolerance in poplar.
    Wang LQ; Wen SS; Wang R; Wang C; Gao B; Lu MZ
    Plant Biotechnol J; 2021 Nov; 19(11):2249-2260. PubMed ID: 34170605
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Moderate salt treatment alleviates ultraviolet-B radiation caused impairment in poplar plants.
    Ma X; Ou YB; Gao YF; Lutts S; Li TT; Wang Y; Chen YF; Sun YF; Yao YA
    Sci Rep; 2016 Sep; 6():32890. PubMed ID: 27597726
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Evaluating the tolerance of young hybrid poplar trees to recycled waters high in salinity and boron.
    Bañuelos GS; LeDuc D; Johnson J
    Int J Phytoremediation; 2010 Jul; 12(5):419-39. PubMed ID: 21166286
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Functional analyses of PtRDM1 gene overexpression in poplars and evaluation of its effect on DNA methylation and response to salt stress.
    Movahedi A; Zhang J; Sun W; Mohammadi K; Almasi Zadeh Yaghuti A; Wei H; Wu X; Yin T; Zhuge Q
    Plant Physiol Biochem; 2018 Jun; 127():64-73. PubMed ID: 29549759
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Identification and characterization of genes conferring salt tolerance to Escherichia coli from pond water metagenome.
    Kapardar RK; Ranjan R; Grover A; Puri M; Sharma R
    Bioresour Technol; 2010 Jun; 101(11):3917-24. PubMed ID: 20133127
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Leaf-associated bacteria from transgenic white poplar producing resveratrol-like compounds: isolation, molecular characterization, and evaluation of oxidative stress tolerance.
    Balestrazzi A; Bonadei M; Calvio C; Mattivi F; Carbonera D
    Can J Microbiol; 2009 Jul; 55(7):829-40. PubMed ID: 19767855
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Effect of Overexpression of
    Ding C; Zhang W; Li D; Dong Y; Liu J; Huang Q; Su X
    Front Plant Sci; 2020; 11():1192. PubMed ID: 32922413
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Temperature signals contribute to the timing of photoperiodic growth cessation and bud set in poplar.
    Rohde A; Bastien C; Boerjan W
    Tree Physiol; 2011 May; 31(5):472-82. PubMed ID: 21636689
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Differences in Al sensitivity affect establishment of Populus genotypes on acidic forest land.
    Böhlenius H; Asp H; Hjelm K
    PLoS One; 2018; 13(9):e0204461. PubMed ID: 30256819
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Populus × canescens root suberization in reaction to osmotic and salt stress is limited to the developing younger root tip region.
    Grünhofer P; Stöcker T; Guo Y; Li R; Lin J; Ranathunge K; Schoof H; Schreiber L
    Physiol Plant; 2022 Sep; 174(5):e13765. PubMed ID: 36281836
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Overexpression of
    Xu M; Chen C; Cai H; Wu L
    Genes (Basel); 2018 Sep; 9(10):. PubMed ID: 30274294
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Genomic insights into salt adaptation in a desert poplar.
    Ma T; Wang J; Zhou G; Yue Z; Hu Q; Chen Y; Liu B; Qiu Q; Wang Z; Zhang J; Wang K; Jiang D; Gou C; Yu L; Zhan D; Zhou R; Luo W; Ma H; Yang Y; Pan S; Fang D; Luo Y; Wang X; Wang G; Wang J; Wang Q; Lu X; Chen Z; Liu J; Lu Y; Yin Y; Yang H; Abbott RJ; Wu Y; Wan D; Li J; Yin T; Lascoux M; Difazio SP; Tuskan GA; Wang J; Liu J
    Nat Commun; 2013; 4():2797. PubMed ID: 24256998
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.