These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
141 related articles for article (PubMed ID: 12385411)
1. Removal of neutralized model parvoviruses and enteroviruses in human IgG solutions by nanofiltration. Omar A; Kempf C Transfusion; 2002 Aug; 42(8):1005-10. PubMed ID: 12385411 [TBL] [Abstract][Full Text] [Related]
2. Removal of small nonenveloped viruses by antibody-enhanced nanofiltration during the manufacture of plasma derivatives. Kreil TR; Wieser A; Berting A; Spruth M; Medek C; Pölsler G; Gaida T; Hämmerle T; Teschner W; Schwarz HP; Barrett PN Transfusion; 2006 Jul; 46(7):1143-51. PubMed ID: 16836561 [TBL] [Abstract][Full Text] [Related]
3. Removal of small non-enveloped viruses by nanofiltration. Yokoyama T; Murai K; Murozuka T; Wakisaka A; Tanifuji M; Fujii N; Tomono T Vox Sang; 2004 May; 86(4):225-9. PubMed ID: 15144526 [TBL] [Abstract][Full Text] [Related]
4. Removal of viruses from human intravenous immune globulin by 35 nm nanofiltration. Troccoli NM; McIver J; Losikoff A; Poiley J Biologicals; 1998 Dec; 26(4):321-9. PubMed ID: 10403036 [TBL] [Abstract][Full Text] [Related]
5. Choice of parvovirus model for validation studies influences the interpretation of the effectiveness of a virus filtration step. Nowak T; Popp B; Roth NJ Biologicals; 2019 Jul; 60():85-92. PubMed ID: 31105022 [TBL] [Abstract][Full Text] [Related]
6. [Evaluation of the virus-elimination efficacy of nanofiltration (Viresolve NFP) for the parvovirus B19 and hepatitis A virus]. Oh DJ; Lee YL; Kang JW; Kwon SY; Cho NS; Kim IS Korean J Lab Med; 2010 Feb; 30(1):45-50. PubMed ID: 20197722 [TBL] [Abstract][Full Text] [Related]
7. A modified caprylic acid method for manufacturing immunoglobulin G from human plasma with high yield and efficient virus clearance. Parkkinen J; Rahola A; von Bonsdorff L; Tölö H; Törmä E Vox Sang; 2006 Feb; 90(2):97-104. PubMed ID: 16430667 [TBL] [Abstract][Full Text] [Related]
8. Viral safety of Nanogam, a new 15 nm-filtered liquid immunoglobulin product. Terpstra FG; Parkkinen J; Tölö H; Koenderman AH; Ter Hart HG; von Bonsdorff L; Törmä E; van Engelenburg FA Vox Sang; 2006 Jan; 90(1):21-32. PubMed ID: 16359352 [TBL] [Abstract][Full Text] [Related]
9. Extent of hepatitis E virus elimination is affected by stabilizers present in plasma products and pore size of nanofilters. Yunoki M; Yamamoto S; Tanaka H; Nishigaki H; Tanaka Y; Nishida A; Adan-Kubo J; Tsujikawa M; Hattori S; Urayama T; Yoshikawa M; Yamamoto I; Hagiwara K; Ikuta K Vox Sang; 2008 Aug; 95(2):94-100. PubMed ID: 18714441 [TBL] [Abstract][Full Text] [Related]
10. Virus inactivation of plasma-derived proteins by pasteurization in the presence of guanidine hydrochloride. Schlegel A; Immelmann A; Kempf C Transfusion; 2001 Mar; 41(3):382-9. PubMed ID: 11274595 [TBL] [Abstract][Full Text] [Related]
11. Effectiveness of nanofiltration in removing small non-enveloped viruses from three different plasma-derived products. Menconi MC; Maggi F; Zakrzewska K; Salotti V; Giovacchini P; Farina C; Andreoli E; Corcioli F; Bendinelli M; Azzi A Transfus Med; 2009 Aug; 19(4):213-7. PubMed ID: 19706139 [TBL] [Abstract][Full Text] [Related]
12. Nanofiltration as a robust method contributing to viral safety of plasma-derived therapeutics: 20 years' experience of the plasma protein manufacturers. Roth NJ; Dichtelmüller HO; Fabbrizzi F; Flechsig E; Gröner A; Gustafson M; Jorquera JI; Kreil TR; Misztela D; Moretti E; Moscardini M; Poelsler G; More J; Roberts P; Wieser A; Gajardo R Transfusion; 2020 Nov; 60(11):2661-2674. PubMed ID: 32815181 [TBL] [Abstract][Full Text] [Related]
13. Removal of parvovirus B19 from hemoglobin solution by nanofiltration. Abe H; Sugawara H; Hirayama J; Ihara H; Kato T; Ikeda H; Ikebuchi K Artif Cells Blood Substit Immobil Biotechnol; 2000 Sep; 28(5):375-83. PubMed ID: 11009110 [TBL] [Abstract][Full Text] [Related]
14. Virus safety of plasma products using 20 nm instead of 15 nm filtration as virus removing step. Koenderman AH; ter Hart HG; Prins-de Nijs IM; Bloem J; Stoffers S; Kempers A; Derksen GJ; Al B; Dekker L; Over J Biologicals; 2012 Nov; 40(6):473-81. PubMed ID: 22901944 [TBL] [Abstract][Full Text] [Related]
15. Detection of rodent parvoviruses by use of fluorogenic nuclease polymerase chain reaction assays. Redig AJ; Besselsen DG Comp Med; 2001 Aug; 51(4):326-31. PubMed ID: 11924790 [TBL] [Abstract][Full Text] [Related]
16. Integration of Planova filters in manufacturing processes of biologicals improve the virus safety effectively: A review of publicly available data. Gröner A Biotechnol Prog; 2024; 40(1):e3398. PubMed ID: 37985214 [TBL] [Abstract][Full Text] [Related]
17. Increasing the capacity of parvovirus-retentive membranes: performance of the Viresolve Prefilter. Bolton GR; Spector S; Lacasse D Biotechnol Appl Biochem; 2006 Jan; 43(Pt 1):55-63. PubMed ID: 16207176 [TBL] [Abstract][Full Text] [Related]
18. A new liquid intravenous immunoglobulin with three dedicated virus reduction steps: virus and prion reduction capacity. Poelsler G; Berting A; Kindermann J; Spruth M; Hämmerle T; Teschner W; Schwarz HP; Kreil TR Vox Sang; 2008 Apr; 94(3):184-192. PubMed ID: 18167162 [TBL] [Abstract][Full Text] [Related]
20. Evaluation of the virus clearance capacity and robustness of the manufacturing process for the recombinant factor VIII protein, turoctocog alfa. Ellgaard TW; Bindslev L; Kamstrup S Protein Expr Purif; 2017 Jan; 129():94-100. PubMed ID: 27620499 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]