These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

104 related articles for article (PubMed ID: 12385643)

  • 1. Simulation of neutron interactions at the single-cell level.
    Alard JP; Bodez V; Tchirkov A; Nénot ML; Arnold J; Crespin S; Rapp M; Verrelle P; Dionet C
    Radiat Res; 2002 Nov; 158(5):650-6. PubMed ID: 12385643
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Simulation code for the interaction of 14 MeV neutrons on cells.
    Nénot ML; Alard JP; Dionet C; Arnold J; Tchirkov A; Meunier H; Bodez V; Rapp M; Verrelle P
    Radiat Prot Dosimetry; 2002; 99(1-4):47-8. PubMed ID: 12194356
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of low-dose neutrons applied at reduced dose rate on human melanoma cells.
    Dionet C; Tchirkov A; Alard JP; Arnold J; Dhermain J; Rapp M; Bodez V; Tamain JC; Monbel I; Malet P; Kwiatkowski F; Donnarieix D; Veyre A; Verrelle P
    Radiat Res; 2000 Oct; 154(4):406-11. PubMed ID: 11023604
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Neutron induced recoil protons of restricted energy and range and biological effectiveness.
    Geard CR
    Health Phys; 1996 Jun; 70(6):804-11. PubMed ID: 8635904
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Shielding implications for secondary neutrons and photons produced within the patient during IMPT.
    DeMarco J; Kupelian P; Santhanam A; Low D
    Med Phys; 2013 Jul; 40(7):071701. PubMed ID: 23822405
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparative study of the effects of different radiation qualities on normal human breast cells.
    Juerß D; Zwar M; Giesen U; Nolte R; Kriesen S; Baiocco G; Puchalska M; van Goethem MJ; Manda K; Hildebrandt G
    Radiat Oncol; 2017 Sep; 12(1):159. PubMed ID: 28946898
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Interaction between the biological effects of high- and low-LET radiation dose components in a mixed field exposure.
    Mason AJ; Giusti V; Green S; Munck af Rosenschöld P; Beynon TD; Hopewell JW
    Int J Radiat Biol; 2011 Dec; 87(12):1162-72. PubMed ID: 21923301
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Calculation of dose contributions of electron and charged heavy particles inside phantoms irradiated by monoenergetic neutron.
    Satoh D; Takahashi F; Endo A; Ohmachi Y; Miyahara N
    J Radiat Res; 2008 Sep; 49(5):503-8. PubMed ID: 18580044
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Personal dose equivalent conversion coefficients for neutron fluence over the energy range of 20-250 MeV.
    Olsher RH; McLean TD; Justus AL; Devine RT; Gadd MS
    Radiat Prot Dosimetry; 2010 Mar; 138(3):199-204. PubMed ID: 19887515
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Calculation of energy distributions of charged particles produced by neutrons from 0.14 to 65 MeV in tissue substitutes.
    Tsuda S; Nakane Y; Yamaguchi Y
    Radiat Prot Dosimetry; 2007; 126(1-4):174-7. PubMed ID: 17569688
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterization of the secondary neutron field produced during treatment of an anthropomorphic phantom with x-rays, protons and carbon ions.
    Tessa CL; Berger T; Kaderka R; Schardt D; Burmeister S; Labrenz J; Reitz G; Durante M
    Phys Med Biol; 2014 Apr; 59(8):2111-25. PubMed ID: 24694920
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reaction mechanism interplay in determining the biological effectiveness of neutrons as a function of energy.
    Baiocco G; Alloni D; Babini G; Mariotti L; Ottolenghi A
    Radiat Prot Dosimetry; 2015 Sep; 166(1-4):316-9. PubMed ID: 25848097
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Neutron-based sterilization of anthrax contamination.
    Liu B; Wang Q
    Health Phys; 2006 May; 90(5 Suppl):S80-4. PubMed ID: 16607173
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tissue responses to low protracted doses of high LET radiations or photons: early and late damage relevant to radio-protective countermeasures.
    Ainsworth EJ; Afzal SM; Crouse DA; Hanson WR; Fry RJ
    Adv Space Res; 1989; 9(10):299-313. PubMed ID: 11537307
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Systematic out-of-field secondary neutron spectrometry and dosimetry in pencil beam scanning proton therapy.
    Trinkl S; Mares V; Englbrecht FS; Wilkens JJ; Wielunski M; Parodi K; Rühm W; Hillbrand M
    Med Phys; 2017 May; 44(5):1912-1920. PubMed ID: 28294362
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparison of repair of DNA double-strand breaks caused by neutron or gamma radiation in cultured human cells.
    Peak MJ; Wang L; Hill CK; Peak JG
    Int J Radiat Biol; 1991 Dec; 60(6):891-8. PubMed ID: 1682401
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of 1.9 MeV monoenergetic neutrons on Vicia faba chromosomes: microdosimetric considerations.
    Geard CR
    Radiat Environ Biophys; 1980; 18(2):79-89. PubMed ID: 6256802
    [TBL] [Abstract][Full Text] [Related]  

  • 18. COMPREHENSIVE RADIATION DOSE MEASUREMENTS AND MONTE CARLO SIMULATION FOR THE 7Li(p,n) ACCELERATOR NEUTRON FIELD.
    Darvish-Molla S; Prestwich WV; Byun SH
    Radiat Prot Dosimetry; 2016 Dec; 171(4):421-430. PubMed ID: 26464524
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Micronucleus induction in Vicia faba roots. Part 2. Biological effects of neutrons below 1 cGy.
    Marshall I; Bianchi M
    Int J Radiat Biol Relat Stud Phys Chem Med; 1983 Aug; 44(2):163-73. PubMed ID: 6603437
    [TBL] [Abstract][Full Text] [Related]  

  • 20. CHARACTERIZATION OF A THIN SILICON SENSOR FOR ACTIVE NEUTRON PERSONAL DOSEMETERS.
    Takada M; Nunomiya T; Nakamura T; Matsumoto T; Masuda A
    Radiat Prot Dosimetry; 2016 Sep; 170(1-4):213-7. PubMed ID: 27150515
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.