These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 12386001)

  • 41. Bioorthogonal labeling cell-surface proteins expressed in pancreatic cancer cells to identify potential diagnostic/therapeutic biomarkers.
    Haun RS; Quick CM; Siegel ER; Raju I; Mackintosh SG; Tackett AJ
    Cancer Biol Ther; 2015; 16(10):1557-65. PubMed ID: 26176765
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Global quantitative proteomic profiling through 18O-labeling in combination with MS/MS spectra analysis.
    White CA; Oey N; Emili A
    J Proteome Res; 2009 Jul; 8(7):3653-65. PubMed ID: 19400582
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Proteomic differential display analysis for TS-1-resistant and -sensitive pancreatic cancer cells using two-dimensional gel electrophoresis and mass spectrometry.
    Yoshida K; Kuramitsu Y; Murakami K; Ryozawa S; Taba K; Kaino S; Zhang X; Sakaida I; Nakamura K
    Anticancer Res; 2011 Jun; 31(6):2103-8. PubMed ID: 21737628
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Differential LC-MS-based proteomics of surgical human cholangiocarcinoma tissues.
    Kawase H; Fujii K; Miyamoto M; Kubota KC; Hirano S; Kondo S; Inagaki F
    J Proteome Res; 2009 Aug; 8(8):4092-103. PubMed ID: 19569727
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Proteomics: drug target discovery on an industrial scale.
    Ryan TE; Patterson SD
    Trends Biotechnol; 2002 Dec; 20(12 Suppl):S45-51. PubMed ID: 12570160
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Development of a 111In-labeled peptide derivative targeting a chemokine receptor, CXCR4, for imaging tumors.
    Hanaoka H; Mukai T; Tamamura H; Mori T; Ishino S; Ogawa K; Iida Y; Doi R; Fujii N; Saji H
    Nucl Med Biol; 2006 May; 33(4):489-94. PubMed ID: 16720240
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Identification of differentially expressed proteins of normal and cancerous human colorectal tissues by liquid chromatograph-mass spectrometer based on iTRAQ approach.
    Lv J; Fan N; Wang Y; Wang X; Gao C
    Cancer Invest; 2015; 33(9):420-8. PubMed ID: 26180943
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Increased Depth and Breadth of Plasma Protein Quantitation via Two-Dimensional Liquid Chromatography/Multiple Reaction Monitoring-Mass Spectrometry with Labeled Peptide Standards.
    Percy AJ; Yang J; Chambers AG; Borchers CH
    Methods Mol Biol; 2016; 1410():1-21. PubMed ID: 26867735
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Functional genomics and proteomics in the clinical neurosciences: data mining and bioinformatics.
    Phan JH; Quo CF; Wang MD
    Prog Brain Res; 2006; 158():83-108. PubMed ID: 17027692
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Rapid label-free profiling of oral cancer biomarker proteins using nano-UPLC-Q-TOF ion mobility mass spectrometry.
    Nassar AF; Williams BJ; Yaworksy DC; Patel V; Rusling JF
    Proteomics Clin Appl; 2016 Mar; 10(3):280-9. PubMed ID: 26684082
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Identification and characterization of molecular targets of natural products by mass spectrometry.
    Cheng KW; Wong CC; Wang M; He QY; Chen F
    Mass Spectrom Rev; 2010; 29(1):126-55. PubMed ID: 19319922
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Discovery of putative pancreatic cancer biomarkers using subcellular proteomics.
    McKinney KQ; Lee YY; Choi HS; Groseclose G; Iannitti DA; Martinie JB; Russo MW; Lundgren DH; Han DK; Bonkovsky HL; Hwang SI
    J Proteomics; 2011 Jan; 74(1):79-88. PubMed ID: 20807598
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Using reverse-phase protein arrays as pharmacodynamic assays for functional proteomics, biomarker discovery, and drug development in cancer.
    Lu Y; Ling S; Hegde AM; Byers LA; Coombes K; Mills GB; Akbani R
    Semin Oncol; 2016 Aug; 43(4):476-83. PubMed ID: 27663479
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Mesopore-assisted profiling strategies in clinical proteomics for drug/target discovery.
    Savino R; Terracciano R
    Drug Discov Today; 2012 Feb; 17(3-4):143-52. PubMed ID: 22016086
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Taking a systems approach to the identification of novel therapeutic targets and biomarkers.
    Dunn DA; Apanovitch D; Follettie M; He T; Ryan T
    Curr Pharm Biotechnol; 2010 Nov; 11(7):721-34. PubMed ID: 20809898
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Reverse-phase protein array analysis to identify biomarker proteins in human pancreatic cancer.
    Huang YJ; Frazier ML; Zhang N; Liu Q; Wei C
    Dig Dis Sci; 2014 May; 59(5):968-75. PubMed ID: 24248418
    [TBL] [Abstract][Full Text] [Related]  

  • 57. A combined approach to data mining of textual and structured data to identify cancer-related targets.
    Pospisil P; Iyer LK; Adelstein SJ; Kassis AI
    BMC Bioinformatics; 2006 Jul; 7():354. PubMed ID: 16857057
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Unraveling altered RNA metabolism in pancreatic cancer cells by liquid-chromatography coupling to ion mobility mass spectrometry.
    Lagies S; Schlimpert M; Braun LM; Kather M; Plagge J; Erbes T; Wittel UA; Kammerer B
    Anal Bioanal Chem; 2019 Sep; 411(24):6319-6328. PubMed ID: 31037374
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Target validation and drug discovery using genomic and protein-protein interaction technologies.
    Pillutla RC; Fisher PB; Blume AJ; Goldstein NI
    Expert Opin Ther Targets; 2002 Aug; 6(4):517-31. PubMed ID: 12223066
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Proteomics as a tool in the pharmaceutical drug design process.
    Yoshida M; Loo JA; Lepleya RA
    Curr Pharm Des; 2001 Mar; 7(4):291-310. PubMed ID: 11254891
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.