BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

245 related articles for article (PubMed ID: 12386156)

  • 1. Genistein improves regulatory interactions between G551D-cystic fibrosis transmembrane conductance regulator and the epithelial sodium channel in Xenopus oocytes.
    Suaud L; Carattino M; Kleyman TR; Rubenstein RC
    J Biol Chem; 2002 Dec; 277(52):50341-7. PubMed ID: 12386156
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cystic fibrosis transmembrane conductance regulator differentially regulates human and mouse epithelial sodium channels in Xenopus oocytes.
    Yan W; Samaha FF; Ramkumar M; Kleyman TR; Rubenstein RC
    J Biol Chem; 2004 May; 279(22):23183-92. PubMed ID: 15047694
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Regulatory interactions of N1303K-CFTR and ENaC in Xenopus oocytes: evidence that chloride transport is not necessary for inhibition of ENaC.
    Suaud L; Yan W; Carattino MD; Robay A; Kleyman TR; Rubenstein RC
    Am J Physiol Cell Physiol; 2007 Apr; 292(4):C1553-61. PubMed ID: 17182731
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Genistein restores functional interactions between Delta F508-CFTR and ENaC in Xenopus oocytes.
    Suaud L; Li J; Jiang Q; Rubenstein RC; Kleyman TR
    J Biol Chem; 2002 Mar; 277(11):8928-33. PubMed ID: 11773060
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Epithelial sodium channels regulate cystic fibrosis transmembrane conductance regulator chloride channels in Xenopus oocytes.
    Jiang Q; Li J; Dubroff R; Ahn YJ; Foskett JK; Engelhardt J; Kleyman TR
    J Biol Chem; 2000 May; 275(18):13266-74. PubMed ID: 10788432
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Abnormal regulatory interactions of I148T-CFTR and the epithelial Na+ channel in Xenopus oocytes.
    Suaud L; Yan W; Rubenstein RC
    Am J Physiol Cell Physiol; 2007 Jan; 292(1):C603-11. PubMed ID: 16822950
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The cytosolic termini of the beta- and gamma-ENaC subunits are involved in the functional interactions between cystic fibrosis transmembrane conductance regulator and epithelial sodium channel.
    Ji HL; Chalfant ML; Jovov B; Lockhart JP; Parker SB; Fuller CM; Stanton BA; Benos DJ
    J Biol Chem; 2000 Sep; 275(36):27947-56. PubMed ID: 10821834
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cl- transport by cystic fibrosis transmembrane conductance regulator (CFTR) contributes to the inhibition of epithelial Na+ channels (ENaCs) in Xenopus oocytes co-expressing CFTR and ENaC.
    Briel M; Greger R; Kunzelmann K
    J Physiol; 1998 May; 508 ( Pt 3)(Pt 3):825-36. PubMed ID: 9518736
    [TBL] [Abstract][Full Text] [Related]  

  • 9. δβγ-ENaC is inhibited by CFTR but stimulated by cAMP in
    Rauh R; Hoerner C; Korbmacher C
    Am J Physiol Lung Cell Mol Physiol; 2017 Feb; 312(2):L277-L287. PubMed ID: 27941075
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of the serine/threonine kinase SGK1 on the epithelial Na(+) channel (ENaC) and CFTR: implications for cystic fibrosis.
    Wagner CA; Ott M; Klingel K; Beck S; Melzig J; Friedrich B; Wild KN; Bröer S; Moschen I; Albers A; Waldegger S; Tümmler B; Egan ME; Geibel JP; Kandolf R; Lang F
    Cell Physiol Biochem; 2001; 11(4):209-18. PubMed ID: 11509829
    [TBL] [Abstract][Full Text] [Related]  

  • 11. ClC-5 chloride channel alters expression of the epithelial sodium channel (ENaC).
    Mo L; Wills NK
    J Membr Biol; 2004 Nov; 202(1):21-37. PubMed ID: 15702377
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of purinergic stimulation, CFTR and osmotic stress on amiloride-sensitive Na+ transport in epithelia and Xenopus oocytes.
    Schreiber R; König J; Sun J; Markovich D; Kunzelmann K
    J Membr Biol; 2003 Mar; 192(2):101-10. PubMed ID: 12682798
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of genistein on native epithelial tissue from normal individuals and CF patients and on ion channels expressed in Xenopus oocytes.
    Mall M; Wissner A; Seydewitz HH; Hübner M; Kuehr J; Brandis M; Greger R; Kunzelmann K
    Br J Pharmacol; 2000 Aug; 130(8):1884-92. PubMed ID: 10952679
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Regulation of epithelial sodium channels by the cystic fibrosis transmembrane conductance regulator.
    Ismailov II; Awayda MS; Jovov B; Berdiev BK; Fuller CM; Dedman JR; Kaetzel M; Benos DJ
    J Biol Chem; 1996 Mar; 271(9):4725-32. PubMed ID: 8617738
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Wild type but not deltaF508 CFTR inhibits Na+ conductance when coexpressed in Xenopus oocytes.
    Mall M; Hipper A; Greger R; Kunzelmann K
    FEBS Lett; 1996 Feb; 381(1-2):47-52. PubMed ID: 8641437
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cl- interference with the epithelial Na+ channel ENaC.
    Bachhuber T; König J; Voelcker T; Mürle B; Schreiber R; Kunzelmann K
    J Biol Chem; 2005 Sep; 280(36):31587-94. PubMed ID: 16027156
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The first-nucleotide binding domain of the cystic-fibrosis transmembrane conductance regulator is important for inhibition of the epithelial Na+ channel.
    Schreiber R; Hopf A; Mall M; Greger R; Kunzelmann K
    Proc Natl Acad Sci U S A; 1999 Apr; 96(9):5310-5. PubMed ID: 10220462
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The cystic fibrosis transmembrane conductance regulator (CFTR) inhibits ENaC through an increase in the intracellular Cl- concentration.
    König J; Schreiber R; Voelcker T; Mall M; Kunzelmann K
    EMBO Rep; 2001 Nov; 2(11):1047-51. PubMed ID: 11606421
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cystic fibrosis transmembrane conductance regulator inhibits epithelial Na+ channels carrying Liddle's syndrome mutations.
    Hopf A; Schreiber R; Mall M; Greger R; Kunzelmann K
    J Biol Chem; 1999 May; 274(20):13894-9. PubMed ID: 10318798
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Downregulation of epithelial sodium channel (ENaC) by CFTR co-expressed in Xenopus oocytes is independent of Cl- conductance.
    Chabot H; Vives MF; Dagenais A; Grygorczyk C; Berthiaume Y; Grygorczyk R
    J Membr Biol; 1999 Jun; 169(3):175-88. PubMed ID: 10354464
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.