BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

210 related articles for article (PubMed ID: 12386286)

  • 1. Embryogenesis of the congenital anomalies of the kidney and the urinary tract.
    Kuwayama F; Miyazaki Y; Ichikawa I
    Nephrol Dial Transplant; 2002; 17 Suppl 9():45-7. PubMed ID: 12386286
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ontogeny of congenital anomalies of the kidney and urinary tract, CAKUT.
    Miyazaki Y; Ichikawa I
    Pediatr Int; 2003 Oct; 45(5):598-604. PubMed ID: 14521544
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Paradigm shift from classic anatomic theories to contemporary cell biological views of CAKUT.
    Ichikawa I; Kuwayama F; Pope JC; Stephens FD; Miyazaki Y
    Kidney Int; 2002 Mar; 61(3):889-98. PubMed ID: 11849443
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bone morphogenetic protein 4 regulates the budding site and elongation of the mouse ureter.
    Miyazaki Y; Oshima K; Fogo A; Hogan BL; Ichikawa I
    J Clin Invest; 2000 Apr; 105(7):863-73. PubMed ID: 10749566
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Genetics of vesicoureteral reflux and congenital anomalies of the kidney and urinary tract.
    Lee KH; Gee HY; Shin JI
    Investig Clin Urol; 2017 Jun; 58(Suppl 1):S4-S13. PubMed ID: 28612055
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Congenital anomalies of the kidney and urinary tract--role of the loss of function mutation in the pluripotent angiotensin type 2 receptor gene.
    Pope JC; Brock JW; Adams MC; Miyazaki Y; Stephens FD; Ichikawa I
    J Urol; 2001 Jan; 165(1):196-202. PubMed ID: 11125405
    [TBL] [Abstract][Full Text] [Related]  

  • 7. How they begin and how they end: classic and new theories for the development and deterioration of congenital anomalies of the kidney and urinary tract, CAKUT.
    Pope JC; Brock JW; Adams MC; Stephens FD; Ichikawa I
    J Am Soc Nephrol; 1999 Sep; 10(9):2018-28. PubMed ID: 10477156
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Congenital anomalies of the kidney and urinary tract: an embryogenetic review.
    dos Santos Junior AC; de Miranda DM; Simões e Silva AC
    Birth Defects Res C Embryo Today; 2014 Dec; 102(4):374-81. PubMed ID: 25420794
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Vesicoureteral reflux and other urinary tract malformations in mice compound heterozygous for Pax2 and Emx2.
    Boualia SK; Gaitan Y; Murawski I; Nadon R; Gupta IR; Bouchard M
    PLoS One; 2011; 6(6):e21529. PubMed ID: 21731775
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Role of angiotensin in the development of the kidney and urinary tract.
    Pope JC; Nishimura H; Ichikawa I
    Nephrologie; 1998; 19(7):433-6. PubMed ID: 9857380
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Novel Insights into the Pathogenesis of Monogenic Congenital Anomalies of the Kidney and Urinary Tract.
    van der Ven AT; Vivante A; Hildebrandt F
    J Am Soc Nephrol; 2018 Jan; 29(1):36-50. PubMed ID: 29079659
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mouse Models of Congenital Kidney Anomalies.
    Kuure S; Sariola H
    Adv Exp Med Biol; 2020; 1236():109-136. PubMed ID: 32304071
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Role of the angiotensin type 2 receptor gene in congenital anomalies of the kidney and urinary tract, CAKUT, of mice and men.
    Nishimura H; Yerkes E; Hohenfellner K; Miyazaki Y; Ma J; Hunley TE; Yoshida H; Ichiki T; Threadgill D; Phillips JA; Hogan BM; Fogo A; Brock JW; Inagami T; Ichikawa I
    Mol Cell; 1999 Jan; 3(1):1-10. PubMed ID: 10024874
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Genetic basis for malformation-associated uropathy and renal dysplasia].
    Oppezzo C; Barberis V; Edefonti A; Cusi D; Marra G
    G Ital Nefrol; 2003; 20(2):120-6. PubMed ID: 12746796
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Interkinetic nuclear migration in the mouse embryonic ureteric epithelium: Possible implication for congenital anomalies of the kidney and urinary tract.
    Motoya T; Ogawa N; Nitta T; Rafiq AM; Jahan E; Furuya M; Matsumoto A; Udagawa J; Otani H
    Congenit Anom (Kyoto); 2016 May; 56(3):127-34. PubMed ID: 26710751
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The renin-angiotensin system in the development of the congenital anomalies of the kidney and urinary tract.
    Niimura F; Kon V; Ichikawa I
    Curr Opin Pediatr; 2006 Apr; 18(2):161-6. PubMed ID: 16601496
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Role of the angiotensin receptor in the development of the mammalian kidney and urinary tract.
    Miyazaki Y; Ichikawa I
    Comp Biochem Physiol A Mol Integr Physiol; 2001 Jan; 128(1):89-97. PubMed ID: 11137441
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Study of the association between the BMP4 gene and congenital anomalies of the kidney and urinary tract.
    Reis GS; Simões E Silva AC; Freitas IS; Heilbuth TR; Marco LA; Oliveira EA; Miranda DM
    J Pediatr (Rio J); 2014; 90(1):58-64. PubMed ID: 24131739
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Disruption of Gen1 causes ectopic budding and kidney hypoplasia in mice.
    Li Y; Yu M; Tan L; Xue S; Du X; Wang C; Wu X; Xu H; Shen Q
    Biochem Biophys Res Commun; 2022 Jan; 589():173-179. PubMed ID: 34922199
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Screening for mutations in BMP4 and FOXC1 genes in congenital anomalies of the kidney and urinary tract in humans.
    Nakano T; Niimura F; Hohenfellner K; Miyakita E; Ichikawa I
    Tokai J Exp Clin Med; 2003 Oct; 28(3):121-6. PubMed ID: 15055404
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.