These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 12387405)

  • 21. Influence of iron-bearing phyllosilicates on the dechlorination kinetics of 1,1,1-trichloroethane in Fe(II)/cement slurries.
    Jung B; Batchelor B
    Chemosphere; 2007 Jul; 68(7):1254-61. PubMed ID: 17368506
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Apparent first-order kinetics in the transformation of 1,1,1-trichloroethane in groundwater following a transient release.
    Wing MR
    Chemosphere; 1997 Feb; 34(4):771-81. PubMed ID: 9569943
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Effects of dissolved oxygen on formation of corrosion products and concomitant oxygen and nitrate reduction in zero-valent iron systems with or without aqueous Fe2+.
    Huang YH; Zhang TC
    Water Res; 2005 May; 39(9):1751-60. PubMed ID: 15899273
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Reductive dechlorination of carbon tetrachloride and tetrachloroethylene by zerovalent silicon-iron reductants.
    Doong RA; Chen KT; Tsai HC
    Environ Sci Technol; 2003 Jun; 37(11):2575-81. PubMed ID: 12831046
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Longevity of granular iron in groundwater treatment processes: corrosion product development.
    Kohn T; Livi KJ; Roberts AL; Vikesland PJ
    Environ Sci Technol; 2005 Apr; 39(8):2867-79. PubMed ID: 15884388
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Bio-beads with immobilized anaerobic bacteria, zero-valent iron, and active carbon for the removal of trichloroethane from groundwater.
    Zhou YZ; Yang J; Wang XL; Pan YQ; Li H; Zhou D; Liu YD; Wang P; Gu JD; Lu Q; Qiu YF; Lin KF
    Environ Sci Pollut Res Int; 2014 Oct; 21(19):11500-9. PubMed ID: 24906831
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The reductive degradation of 1,1,1-trichloroethane by Fe(0) in a soil slurry system.
    Wu X; Lu S; Qiu Z; Sui Q; Lin K; Du X; Luo Q
    Environ Sci Pollut Res Int; 2014 Jan; 21(2):1401-10. PubMed ID: 23904257
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Carbon disulfide removal by zero valent iron.
    McGeough KL; Kalin RM; Myles P
    Environ Sci Technol; 2007 Jul; 41(13):4607-12. PubMed ID: 17695904
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Effects of bioaugmentation on enhanced reductive dechlorination of 1,1,1-trichloroethane in groundwater: a comparison of three sites.
    Scheutz C; Durant ND; Broholm MM
    Biodegradation; 2014 Jun; 25(3):459-78. PubMed ID: 24233554
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Green rust and iron oxide formation influences metolachlor dechlorination during zerovalent iron treatment.
    Satapanajaru T; Shea PJ; Comfort SD; Roh Y
    Environ Sci Technol; 2003 Nov; 37(22):5219-27. PubMed ID: 14655711
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Nitrate removal by Fe0/Pd/Cu nano-composite in groundwater.
    Liu H; Guo M; Zhang Y
    Environ Technol; 2014; 35(5-8):917-24. PubMed ID: 24645474
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Reductive dechlorination of chlorinated hydrocarbons as non-aqueous phase liquid (NAPL): preliminary investigation on effects of cement doses.
    Do SH; Batchelor B
    Sci Total Environ; 2012 Jul; 430():82-7. PubMed ID: 22634553
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A multi-path chain kinetic reaction model to predict the evolution of 1,1,1-trichloroethane and its daughter products contaminant-plume in permeable reactive bio-barriers.
    Wang W; Wu Y
    Environ Pollut; 2019 Oct; 253():1021-1029. PubMed ID: 31434179
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Biochar supported Ni/Fe bimetallic nanoparticles to remove 1,1,1-trichloroethane under various reaction conditions.
    Li H; Qiu YF; Wang XL; Yang J; Yu YJ; Chen YQ; Liu YD
    Chemosphere; 2017 Feb; 169():534-541. PubMed ID: 27898326
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Dechlorination of atrazine using zero-valent iron (Fe0) under neutral pH conditions.
    Kim G; Jeong W; Choe S
    J Hazard Mater; 2008 Jul; 155(3):502-6. PubMed ID: 18329167
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Kinetic analysis of the bacterial reduction of goethite.
    Liu C; Kota S; Zachara JM; Fredrickson JK; Brinkman CK
    Environ Sci Technol; 2001 Jun; 35(12):2482-90. PubMed ID: 11432552
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Competing TCE and cis-DCE degradation kinetics by zero-valent iron-experimental results and numerical simulation.
    Schäfer D; Köber R; Dahmke A
    J Contam Hydrol; 2003 Sep; 65(3-4):183-202. PubMed ID: 12935949
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Degradation of perchloroethylene in cosolvent solutions by zero-valent iron.
    Clark CJ; Rao PS; Annable MD
    J Hazard Mater; 2003 Jan; 96(1):65-78. PubMed ID: 12475479
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Electrochemical and spectroscopic study of arsenate removal from water using zero-valent iron media.
    Farrell J; Wang J; O'Day P; Conklin M
    Environ Sci Technol; 2001 May; 35(10):2026-32. PubMed ID: 11393984
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The role of magnetite nanoparticles in the reduction of nitrate in groundwater by zero-valent iron.
    Cho DW; Song H; Schwartz FW; Kim B; Jeon BH
    Chemosphere; 2015 Apr; 125():41-9. PubMed ID: 25665757
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.