BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

79 related articles for article (PubMed ID: 12387825)

  • 1. Synthesis and incorporation of [6,7]-selenatryptophan into dihydrofolate reductase.
    Boles JO; Henderson J; Hatch D; Silks LA
    Biochem Biophys Res Commun; 2002 Oct; 298(2):257-61. PubMed ID: 12387825
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enzymatic syntheses of 6-(4H-selenolo[3,2-b]pyrrolyl)-L-alanine, 4-(6H-selenolo[2,3-b]pyrrolyl)-L-alanine, and 6-(4H-furo[3,2-b]pyrrolyl-L-alanine.
    Welch M; Phillips RS
    Bioorg Med Chem Lett; 1999 Mar; 9(5):637-40. PubMed ID: 10201820
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Incorporation of beta-selenolo[3,2-b]pyrrolyl-alanine into proteins for phase determination in protein X-ray crystallography.
    Bae JH; Alefelder S; Kaiser JT; Friedrich R; Moroder L; Huber R; Budisa N
    J Mol Biol; 2001 Jun; 309(4):925-36. PubMed ID: 11399069
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Selenomethionyl dihydrofolate reductase from Escherichia coli. Comparative biochemistry and 77Se nuclear magnetic resonance spectroscopy.
    Boles JO; Tolleson WH; Schmidt JC; Dunlap RB; Odom JD
    J Biol Chem; 1992 Nov; 267(31):22217-23. PubMed ID: 1429574
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Incorporation of β-amino acids into dihydrofolate reductase by ribosomes having modifications in the peptidyltransferase center.
    Maini R; Nguyen DT; Chen S; Dedkova LM; Chowdhury SR; Alcala-Torano R; Hecht SM
    Bioorg Med Chem; 2013 Mar; 21(5):1088-96. PubMed ID: 23375097
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Controlling enzyme inhibition using an expanded set of genetically encoded amino acids.
    Zheng S; Kwon I
    Biotechnol Bioeng; 2013 Sep; 110(9):2361-70. PubMed ID: 23568807
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Solvent environments significantly affect the enzymatic function of Escherichia coli dihydrofolate reductase: comparison of wild-type protein and active-site mutant D27E.
    Ohmae E; Miyashita Y; Tate S; Gekko K; Kitazawa S; Kitahara R; Kuwajima K
    Biochim Biophys Acta; 2013 Dec; 1834(12):2782-94. PubMed ID: 24140567
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High expression and steady-state kinetic characterization of methionine site-directed mutants of Escherichia coli methionyl- and selenomethionyl-dihydrofolate reductase.
    Shaw D; Odom JD; Dunlap RB
    Biochim Biophys Acta; 1999 Jan; 1429(2):401-10. PubMed ID: 9989225
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Engineering specificity for folate into dihydrofolate reductase from Escherichia coli.
    Posner BA; Li L; Bethell R; Tsuji T; Benkovic SJ
    Biochemistry; 1996 Feb; 35(5):1653-63. PubMed ID: 8634297
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Two pyrenylalanines in dihydrofolate reductase form an excimer enabling the study of protein dynamics.
    Chen S; Wang L; Fahmi NE; Benkovic SJ; Hecht SM
    J Am Chem Soc; 2012 Nov; 134(46):18883-5. PubMed ID: 23116258
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Separation and determination of seleno amino acids using gas chromatography hyphenated with inductively coupled plasma mass spectrometry after hollow fiber liquid phase microextraction.
    Duan J; Hu B
    J Mass Spectrom; 2009 May; 44(5):605-12. PubMed ID: 19053158
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of fluorine substitution on the structure and dynamics of complexes of dihydrofolate reductase (Escherichia coli).
    Lau EY; Gerig JT
    Biophys J; 1997 Sep; 73(3):1579-92. PubMed ID: 9284325
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Oxidative metabolism of seleno-L-methionine to L-methionine selenoxide by flavin-containing monooxygenases.
    Krause RJ; Glocke SC; Sicuri AR; Ripp SL; Elfarra AA
    Chem Res Toxicol; 2006 Dec; 19(12):1643-9. PubMed ID: 17173378
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synthesis of alanyl nucleobase amino acids and their incorporation into proteins.
    Talukder P; Dedkova LM; Ellington AD; Yakovchuk P; Lim J; Anslyn EV; Hecht SM
    Bioorg Med Chem; 2016 Sep; 24(18):4177-4187. PubMed ID: 27452282
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synthesis of beta-(1-azulenyl)-L-alanine as a potential blue-colored fluorescent tryptophan analog and its use in peptide synthesis.
    Loidl G; Musiol HJ; Budisa N; Huber R; Poirot S; Fourmy D; Moroder L
    J Pept Sci; 2000 Mar; 6(3):139-44. PubMed ID: 10759212
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Production and characterization of fully selenomethionine-labeled Saccharomyces cerevisiae.
    Ouerdane L; Mester Z
    J Agric Food Chem; 2008 Dec; 56(24):11792-9. PubMed ID: 19035646
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Refolding of [6-19F]tryptophan-labeled Escherichia coli dihydrofolate reductase in the presence of ligand: a stopped-flow NMR spectroscopy study.
    Hoeltzli SD; Frieden C
    Biochemistry; 1998 Jan; 37(1):387-98. PubMed ID: 9425060
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Distribution of free seleno-amino acids in plant tissue of Melilotus indica L. grown in selenium-laden soils.
    Guo X; Wu L
    Ecotoxicol Environ Saf; 1998 Mar; 39(3):207-14. PubMed ID: 9570912
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Functional expression of the dihydrofolate reductase domain of Leishmania major dihydrofolate reductase-thymidylate synthase bifunctional protein.
    Yu PL; Zhao J; Yu M; Reid R; Santi DV
    Protein Expr Purif; 1996 Aug; 8(1):23-7. PubMed ID: 8812831
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Methylseleno-amino acid content of food materials by stable isotope dilution mass spectrometry.
    Wolf WR; Zainal H
    Food Nutr Bull; 2002 Sep; 23(3 Suppl):120-3. PubMed ID: 12362778
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.