BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

318 related articles for article (PubMed ID: 12388085)

  • 1. Mammalian stress granules represent sites of accumulation of stalled translation initiation complexes.
    Kimball SR; Horetsky RL; Ron D; Jefferson LS; Harding HP
    Am J Physiol Cell Physiol; 2003 Feb; 284(2):C273-84. PubMed ID: 12388085
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Solitary Stalled 80S Ribosome Prevents mRNA Recruitment to Stress Granules.
    Fedorovskiy AG; Burakov AV; Terenin IM; Bykov DA; Lashkevich KA; Popenko VI; Makarova NE; Sorokin II; Sukhinina AP; Prassolov VS; Ivanov PV; Dmitriev SE
    Biochemistry (Mosc); 2023 Nov; 88(11):1786-1799. PubMed ID: 38105199
    [TBL] [Abstract][Full Text] [Related]  

  • 3. eIF2A, an initiator tRNA carrier refractory to eIF2α kinases, functions synergistically with eIF5B.
    Kim E; Kim JH; Seo K; Hong KY; An SWA; Kwon J; Lee SV; Jang SK
    Cell Mol Life Sci; 2018 Dec; 75(23):4287-4300. PubMed ID: 30019215
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Hsp90 inhibitor geldanamycin abrogates colocalization of eIF4E and eIF4E-transporter into stress granules and association of eIF4E with eIF4G.
    Suzuki Y; Minami M; Suzuki M; Abe K; Zenno S; Tsujimoto M; Matsumoto K; Minami Y
    J Biol Chem; 2009 Dec; 284(51):35597-604. PubMed ID: 19850929
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Non-canonical initiation factors modulate repeat-associated non-AUG translation.
    Green KM; Miller SL; Malik I; Todd PK
    Hum Mol Genet; 2022 Aug; 31(15):2521-2534. PubMed ID: 35220421
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mammalian ataxin-2 modulates translation control at the pre-initiation complex via PI3K/mTOR and is induced by starvation.
    Lastres-Becker I; Nonis D; Eich F; Klinkenberg M; Gorospe M; Kötter P; Klein FA; Kedersha N; Auburger G
    Biochim Biophys Acta; 2016 Sep; 1862(9):1558-69. PubMed ID: 27240544
    [TBL] [Abstract][Full Text] [Related]  

  • 7. eIF4G has intrinsic G-quadruplex binding activity that is required for tiRNA function.
    Lyons SM; Kharel P; Akiyama Y; Ojha S; Dave D; Tsvetkov V; Merrick W; Ivanov P; Anderson P
    Nucleic Acids Res; 2020 Jun; 48(11):6223-6233. PubMed ID: 32374873
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Photosynthetic control of Arabidopsis leaf cytoplasmic translation initiation by protein phosphorylation.
    Boex-Fontvieille E; Daventure M; Jossier M; Zivy M; Hodges M; Tcherkez G
    PLoS One; 2013; 8(7):e70692. PubMed ID: 23894680
    [TBL] [Abstract][Full Text] [Related]  

  • 9. eIF4G as a switch for heat shock mRNA translation.
    Liu Y; Yang P
    Mol Cell; 2024 May; 84(9):1633-1634. PubMed ID: 38701739
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Translational enhancement of target endogenous mRNA in mammalian cells using programmable RNA-binding pentatricopeptide repeat proteins.
    Ping N; Hara-Kuge S; Yagi Y; Kazama T; Nakamura T
    Sci Rep; 2024 Jan; 14(1):251. PubMed ID: 38167853
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Free mRNA in excess upon polysome dissociation is a scaffold for protein multimerization to form stress granules.
    Bounedjah O; Desforges B; Wu TD; Pioche-Durieu C; Marco S; Hamon L; Curmi PA; Guerquin-Kern JL; Piétrement O; Pastré D
    Nucleic Acids Res; 2014 Jul; 42(13):8678-91. PubMed ID: 25013173
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Localization and Functional Roles of Components of the Translation Apparatus in the Eukaryotic Cell Nucleus.
    Kachaev ZM; Ivashchenko SD; Kozlov EN; Lebedeva LA; Shidlovskii YV
    Cells; 2021 Nov; 10(11):. PubMed ID: 34831461
    [TBL] [Abstract][Full Text] [Related]  

  • 13. m
    Ries RJ; Pickering BF; Poh HX; Namkoong S; Jaffrey SR
    Nat Struct Mol Biol; 2023 Oct; 30(10):1525-1535. PubMed ID: 37710015
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Crystal-packing analysis of translation initiation factor 2 reveals new details of its function.
    Nikonov OS; Nikonova EY; Lekontseva NV; Nevskaya NA; Nikonov SV
    Acta Crystallogr D Struct Biol; 2024 Jul; ():. PubMed ID: 38860981
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Stress granules and P-bodies - New ideas and experimental models worth exploring.
    Buchan JR
    Semin Cell Dev Biol; 2024 May; 158():1-2. PubMed ID: 38232687
    [No Abstract]   [Full Text] [Related]  

  • 16. Elda Grabocka: Stress-buffering comes in granules.
    Morgado-Palacin L
    J Cell Biol; 2022 Feb; 221(2):. PubMed ID: 35080616
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Stress granules and processing bodies are dynamically linked sites of mRNP remodeling.
    Kedersha N; Stoecklin G; Ayodele M; Yacono P; Lykke-Andersen J; Fritzler MJ; Scheuner D; Kaufman RJ; Golan DE; Anderson P
    J Cell Biol; 2005 Jun; 169(6):871-84. PubMed ID: 15967811
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Stress granules: sites of mRNA triage that regulate mRNA stability and translatability.
    Kedersha N; Anderson P
    Biochem Soc Trans; 2002 Nov; 30(Pt 6):963-9. PubMed ID: 12440955
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mammalian stress granules and processing bodies.
    Kedersha N; Anderson P
    Methods Enzymol; 2007; 431():61-81. PubMed ID: 17923231
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dual specificity kinase DYRK3 couples stress granule condensation/dissolution to mTORC1 signaling.
    Wippich F; Bodenmiller B; Trajkovska MG; Wanka S; Aebersold R; Pelkmans L
    Cell; 2013 Feb; 152(4):791-805. PubMed ID: 23415227
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.