These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 12388228)

  • 1. Reentry in heterogeneous cardiac tissue described by the Luo-Rudy ventricular action potential model.
    Ten Tusscher KH; Panfilov AV
    Am J Physiol Heart Circ Physiol; 2003 Feb; 284(2):H542-8. PubMed ID: 12388228
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cardiac electrical restitution properties and stability of reentrant spiral waves: a simulation study.
    Qu Z; Weiss JN; Garfinkel A
    Am J Physiol; 1999 Jan; 276(1):H269-83. PubMed ID: 9887041
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Spiral waves in two-dimensional models of ventricular muscle: formation of a stationary core.
    Beaumont J; Davidenko N; Davidenko JM; Jalife J
    Biophys J; 1998 Jul; 75(1):1-14. PubMed ID: 9649363
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electrophysiological heterogeneity and stability of reentry in simulated cardiac tissue.
    Xie F; Qu Z; Garfinkel A; Weiss JN
    Am J Physiol Heart Circ Physiol; 2001 Feb; 280(2):H535-45. PubMed ID: 11158949
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nonuniform muscle fiber orientation causes spiral wave drift in a finite element model of cardiac action potential propagation.
    Rogers JM; McCulloch AD
    J Cardiovasc Electrophysiol; 1994 Jun; 5(6):496-509. PubMed ID: 8087294
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Spiral-wave turbulence and its control in the presence of inhomogeneities in four mathematical models of cardiac tissue.
    Shajahan TK; Nayak AR; Pandit R
    PLoS One; 2009; 4(3):e4738. PubMed ID: 19270753
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Origins of spiral wave meander and breakup in a two-dimensional cardiac tissue model.
    Qu Z; Xie F; Garfinkel A; Weiss JN
    Ann Biomed Eng; 2000 Jul; 28(7):755-71. PubMed ID: 11016413
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A model study of intramural dispersion of action potential duration in the canine pulmonary conus.
    Cates AW; Pollard AE
    Ann Biomed Eng; 1998; 26(4):567-76. PubMed ID: 9662149
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A model for human action potential dynamics in vivo.
    Gray RA; Franz MR
    Am J Physiol Heart Circ Physiol; 2020 Mar; 318(3):H534-H546. PubMed ID: 31951472
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dynamical effects of diffusive cell coupling on cardiac excitation and propagation: a simulation study.
    Qu Z
    Am J Physiol Heart Circ Physiol; 2004 Dec; 287(6):H2803-12. PubMed ID: 15271669
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Negative filament tension in the Luo-Rudy model of cardiac tissue.
    Alonso S; Panfilov AV
    Chaos; 2007 Mar; 17(1):015102. PubMed ID: 17411259
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Proarrhythmic response to potassium channel blockade. Numerical studies of polymorphic tachyarrhythmias.
    Starmer CF; Romashko DN; Reddy RS; Zilberter YI; Starobin J; Grant AO; Krinsky VI
    Circulation; 1995 Aug; 92(3):595-605. PubMed ID: 7634474
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Scroll wave dynamics in a three-dimensional cardiac tissue model: roles of restitution, thickness, and fiber rotation.
    Qu Z; Kil J; Xie F; Garfinkel A; Weiss JN
    Biophys J; 2000 Jun; 78(6):2761-75. PubMed ID: 10827961
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electrical refractory period restitution and spiral wave reentry in simulated cardiac tissue.
    Xie F; Qu Z; Garfinkel A; Weiss JN
    Am J Physiol Heart Circ Physiol; 2002 Jul; 283(1):H448-60. PubMed ID: 12063320
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanisms of discordant alternans and induction of reentry in simulated cardiac tissue.
    Qu Z; Garfinkel A; Chen PS; Weiss JN
    Circulation; 2000 Oct; 102(14):1664-70. PubMed ID: 11015345
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Slow [Na
    Krogh-Madsen T; Christini DJ
    Chaos; 2017 Sep; 27(9):093907. PubMed ID: 28964146
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Spiral-wave dynamics depend sensitively on inhomogeneities in mathematical models of ventricular tissue.
    Shajahan TK; Sinha S; Pandit R
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Jan; 75(1 Pt 1):011929. PubMed ID: 17358206
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Anisotropic shortening in the wavelength of electrical waves promotes onset of electrical turbulence in cardiac tissue: An in silico study.
    Zimik S; Pandit R; Majumder R
    PLoS One; 2020; 15(3):e0230214. PubMed ID: 32168323
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Simulation study of cellular electric properties in heart failure.
    Priebe L; Beuckelmann DJ
    Circ Res; 1998 Jun; 82(11):1206-23. PubMed ID: 9633920
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A model for human ventricular tissue.
    ten Tusscher KH; Noble D; Noble PJ; Panfilov AV
    Am J Physiol Heart Circ Physiol; 2004 Apr; 286(4):H1573-89. PubMed ID: 14656705
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.