These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

216 related articles for article (PubMed ID: 12388366)

  • 1. Hyperoxia-induced NAD(P)H oxidase activation and regulation by MAP kinases in human lung endothelial cells.
    Parinandi NL; Kleinberg MA; Usatyuk PV; Cummings RJ; Pennathur A; Cardounel AJ; Zweier JL; Garcia JG; Natarajan V
    Am J Physiol Lung Cell Mol Physiol; 2003 Jan; 284(1):L26-38. PubMed ID: 12388366
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Src-mediated tyrosine phosphorylation of p47phox in hyperoxia-induced activation of NADPH oxidase and generation of reactive oxygen species in lung endothelial cells.
    Chowdhury AK; Watkins T; Parinandi NL; Saatian B; Kleinberg ME; Usatyuk PV; Natarajan V
    J Biol Chem; 2005 May; 280(21):20700-11. PubMed ID: 15774483
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Regulation of hyperoxia-induced NADPH oxidase activation in human lung endothelial cells by the actin cytoskeleton and cortactin.
    Usatyuk PV; Romer LH; He D; Parinandi NL; Kleinberg ME; Zhan S; Jacobson JR; Dudek SM; Pendyala S; Garcia JG; Natarajan V
    J Biol Chem; 2007 Aug; 282(32):23284-95. PubMed ID: 17562703
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An NAD(P)H oxidase regulates growth and transcription in melanoma cells.
    Brar SS; Kennedy TP; Sturrock AB; Huecksteadt TP; Quinn MT; Whorton AR; Hoidal JR
    Am J Physiol Cell Physiol; 2002 Jun; 282(6):C1212-24. PubMed ID: 11997235
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Role of Nox4 and Nox2 in hyperoxia-induced reactive oxygen species generation and migration of human lung endothelial cells.
    Pendyala S; Gorshkova IA; Usatyuk PV; He D; Pennathur A; Lambeth JD; Thannickal VJ; Natarajan V
    Antioxid Redox Signal; 2009 Apr; 11(4):747-64. PubMed ID: 18783311
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification of a functional leukocyte-type NADPH oxidase in human endothelial cells :a potential atherogenic source of reactive oxygen species.
    Meyer JW; Holland JA; Ziegler LM; Chang MM; Beebe G; Schmitt ME
    Endothelium; 1999; 7(1):11-22. PubMed ID: 10599557
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hyperoxia-induced p47phox activation and ROS generation is mediated through S1P transporter Spns2, and S1P/S1P1&2 signaling axis in lung endothelium.
    Harijith A; Pendyala S; Ebenezer DL; Ha AW; Fu P; Wang YT; Ma K; Toth PT; Berdyshev EV; Kanteti P; Natarajan V
    Am J Physiol Lung Cell Mol Physiol; 2016 Aug; 311(2):L337-51. PubMed ID: 27343196
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molecular characterization and localization of the NAD(P)H oxidase components gp91-phox and p22-phox in endothelial cells.
    Bayraktutan U; Blayney L; Shah AM
    Arterioscler Thromb Vasc Biol; 2000 Aug; 20(8):1903-11. PubMed ID: 10938010
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Phospholipase D-mediated activation of IQGAP1 through Rac1 regulates hyperoxia-induced p47phox translocation and reactive oxygen species generation in lung endothelial cells.
    Usatyuk PV; Gorshkova IA; He D; Zhao Y; Kalari SK; Garcia JG; Natarajan V
    J Biol Chem; 2009 May; 284(22):15339-52. PubMed ID: 19366706
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Differential activation of mitogen-activated protein kinases in smooth muscle cells by angiotensin II: involvement of p22phox and reactive oxygen species.
    Viedt C; Soto U; Krieger-Brauer HI; Fei J; Elsing C; Kübler W; Kreuzer J
    Arterioscler Thromb Vasc Biol; 2000 Apr; 20(4):940-8. PubMed ID: 10764657
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Novel role for non-muscle myosin light chain kinase (MLCK) in hyperoxia-induced recruitment of cytoskeletal proteins, NADPH oxidase activation, and reactive oxygen species generation in lung endothelium.
    Usatyuk PV; Singleton PA; Pendyala S; Kalari SK; He D; Gorshkova IA; Camp SM; Moitra J; Dudek SM; Garcia JG; Natarajan V
    J Biol Chem; 2012 Mar; 287(12):9360-75. PubMed ID: 22219181
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Role of reactive oxygen species and NAD(P)H oxidase in alpha(1)-adrenoceptor signaling in adult rat cardiac myocytes.
    Xiao L; Pimentel DR; Wang J; Singh K; Colucci WS; Sawyer DB
    Am J Physiol Cell Physiol; 2002 Apr; 282(4):C926-34. PubMed ID: 11880281
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dynamin 2 and c-Abl are novel regulators of hyperoxia-mediated NADPH oxidase activation and reactive oxygen species production in caveolin-enriched microdomains of the endothelium.
    Singleton PA; Pendyala S; Gorshkova IA; Mambetsariev N; Moitra J; Garcia JG; Natarajan V
    J Biol Chem; 2009 Dec; 284(50):34964-75. PubMed ID: 19833721
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mechanism of endothelial cell NADPH oxidase activation by angiotensin II. Role of the p47phox subunit.
    Li JM; Shah AM
    J Biol Chem; 2003 Apr; 278(14):12094-100. PubMed ID: 12560337
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Angiopoietin-1-induced angiogenesis is modulated by endothelial NADPH oxidase.
    Chen JX; Zeng H; Lawrence ML; Blackwell TS; Meyrick B
    Am J Physiol Heart Circ Physiol; 2006 Oct; 291(4):H1563-72. PubMed ID: 16679392
    [TBL] [Abstract][Full Text] [Related]  

  • 16. NADPH oxidase promotes NF-kappaB activation and proliferation in human airway smooth muscle.
    Brar SS; Kennedy TP; Sturrock AB; Huecksteadt TP; Quinn MT; Murphy TM; Chitano P; Hoidal JR
    Am J Physiol Lung Cell Mol Physiol; 2002 Apr; 282(4):L782-95. PubMed ID: 11880305
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Differential NADPH- versus NADH-dependent superoxide production by phagocyte-type endothelial cell NADPH oxidase.
    Li JM; Shah AM
    Cardiovasc Res; 2001 Dec; 52(3):477-86. PubMed ID: 11738065
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Vascular NAD(P)H oxidase is distinct from the phagocytic enzyme and modulates vascular reactivity control.
    Souza HP; Laurindo FR; Ziegelstein RC; Berlowitz CO; Zweier JL
    Am J Physiol Heart Circ Physiol; 2001 Feb; 280(2):H658-67. PubMed ID: 11158964
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Regulation of angiotensin II-stimulated osteopontin expression in cardiac microvascular endothelial cells: role of p42/44 mitogen-activated protein kinase and reactive oxygen species.
    Xie Z; Pimental DR; Lohan S; Vasertriger A; Pligavko C; Colucci WS; Singh K
    J Cell Physiol; 2001 Jul; 188(1):132-8. PubMed ID: 11382929
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Novel role of gp91(phox)-containing NAD(P)H oxidase in vascular endothelial growth factor-induced signaling and angiogenesis.
    Ushio-Fukai M; Tang Y; Fukai T; Dikalov SI; Ma Y; Fujimoto M; Quinn MT; Pagano PJ; Johnson C; Alexander RW
    Circ Res; 2002 Dec; 91(12):1160-7. PubMed ID: 12480817
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.