These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
128 related articles for article (PubMed ID: 12388464)
1. Changes of carp FoF1-ATPase in association with temperature acclimation. Itoi S; Kinoshita S; Kikuchi K; Watabe S Am J Physiol Regul Integr Comp Physiol; 2003 Jan; 284(1):R153-63. PubMed ID: 12388464 [TBL] [Abstract][Full Text] [Related]
2. cDNA cloning and characterization of temperature-acclimation-associated light meromyosins from grass carp fast skeletal muscle. Wang SY; Tao Y; Liang CS; Fukushima H; Watabe S Comp Biochem Physiol B Biochem Mol Biol; 2008 Feb; 149(2):378-87. PubMed ID: 18055241 [TBL] [Abstract][Full Text] [Related]
3. cDNA cloning of myosin heavy chain isoforms from carp fast skeletal muscle and their gene expression associated with temperature acclimation. Imai J; Hirayama Y; Kikuchi K; Kakinuma M; Watabe S J Exp Biol; 1997 Jan; 200(Pt 1):27-34. PubMed ID: 9023993 [TBL] [Abstract][Full Text] [Related]
4. Temperature acclimation induces light meromyosin isoforms with different primary structures in carp fast skeletal muscle. Watabe S; Imai J; Nakaya M; Hirayama Y; Okamoto Y; Masaki H; Uozumi T; Hirono I; Aoki T Biochem Biophys Res Commun; 1995 Mar; 208(1):118-25. PubMed ID: 7887920 [TBL] [Abstract][Full Text] [Related]
5. Temperature plasticity of contractile proteins in fish muscle. Watabe S J Exp Biol; 2002 Aug; 205(Pt 15):2231-6. PubMed ID: 12110657 [TBL] [Abstract][Full Text] [Related]
6. Molecular cloning and mRNA expression analysis of carp embryonic, slow and cardiac myosin heavy chain isoforms. Nihei Y; Kobiyama A; Ikeda D; Ono Y; Ohara S; Cole NJ; Johnston IA; Watabe S J Exp Biol; 2006 Jan; 209(Pt 1):188-98. PubMed ID: 16354789 [TBL] [Abstract][Full Text] [Related]
7. Temperature adaptation of biological membranes. Compensation of the molar activity of cytochrome c oxidase in the mitochondrial energy-transducing membrane during thermal acclimation of the carp (Cyprinus carpio L.). Wodtke E Biochim Biophys Acta; 1981 Feb; 640(3):710-20. PubMed ID: 6260175 [TBL] [Abstract][Full Text] [Related]
8. Structural differences in the crossbridge head of temperature-associated myosin subfragment-1 isoforms from carp fast skeletal muscle. Hirayama Y; Watabe S Eur J Biochem; 1997 Jun; 246(2):380-7. PubMed ID: 9208928 [TBL] [Abstract][Full Text] [Related]
9. Force-velocity characteristics and metabolism of carp muscle fibres following temperature acclimation. Johnston IA; Sidell BD; Driedzic WR J Exp Biol; 1985 Nov; 119():239-49. PubMed ID: 4093757 [TBL] [Abstract][Full Text] [Related]
10. Effects of thermal acclimation on the relaxation system of crucian carp white myotomal muscle. Vornanen M; Tiitu V; Käkelä R; Aho E J Exp Zool; 1999 Aug; 284(3):241-51. PubMed ID: 10404115 [TBL] [Abstract][Full Text] [Related]
11. Changes in tension generation and ATPase activity in skinned muscle fibres of the carp following temperature acclimation. Altringham JD; Johnston IA Pflugers Arch; 1985 Apr; 403(4):449-51. PubMed ID: 3160006 [TBL] [Abstract][Full Text] [Related]
12. Myosin heavy chain genes expressed in juvenile and adult silver carp Hypopthalmichthys molitrix: novel fast-type myosin heavy chain genes of silver carp. Fukushima H; Ikeda D; Tao Y; Watabe S Gene; 2009 Mar; 432(1-2):102-11. PubMed ID: 19100315 [TBL] [Abstract][Full Text] [Related]
13. Myofibrillar ATPase activity in the carp Cyprinus carpio: interactions between starvation and environmental temperature. Heap SP; Watt PW; Goldspink G J Exp Biol; 1986 Jul; 123():373-82. PubMed ID: 2943851 [TBL] [Abstract][Full Text] [Related]
14. Mechanisms of temperature acclimation in the carp: a molecular biology approach. Gerlach GF; Turay L; Malik KT; Lida J; Scutt A; Goldspink G Am J Physiol; 1990 Aug; 259(2 Pt 2):R237-44. PubMed ID: 1696790 [TBL] [Abstract][Full Text] [Related]
15. Functional analysis on the 5'-flanking region of carp fast skeletal myosin heavy chain genes for their expression at different temperatures. Kobiyama A; Hirayama M; Muramatsu-Uno M; Watabe S Gene; 2006 May; 372():82-91. PubMed ID: 16472943 [TBL] [Abstract][Full Text] [Related]
16. Influence of acclimation temperature on mitochondrial DNA, RNA, and enzymes in skeletal muscle. Battersby BJ; Moyes CD Am J Physiol; 1998 Sep; 275(3):R905-12. PubMed ID: 9728090 [TBL] [Abstract][Full Text] [Related]
17. Two types of mRNA encoding myosin regulatory light chain in carp fast skeletal muscle differ in their 3' non-coding regions and expression patterns following temperature acclimation. Hirayama Y; Kobiyama A; Ochiai Y; Watabe S J Exp Biol; 1998 Oct; 201(Pt 20):2815-20. PubMed ID: 9866874 [TBL] [Abstract][Full Text] [Related]
18. Lower activation energy for sliding of F-actin on a less thermostable isoform of carp myosin. Chaen S; Nakaya M; Guo XF; Watabe S J Biochem; 1996 Oct; 120(4):788-91. PubMed ID: 8947842 [TBL] [Abstract][Full Text] [Related]
19. [Screening cold-acclimation differential expression candidate genes in the brain of common carp (Cyprinus carpio)]. Xu LH; Chang YM; Liu CL; Liang LQ; Liu JL; Chi BJ Yi Chuan; 2011 Mar; 33(3):262-9. PubMed ID: 21402535 [TBL] [Abstract][Full Text] [Related]
20. Regulation of branchial Na(+)/K(+)-ATPase in common carp Cyprinus carpio L. acclimated to different temperatures. Metz JR; van den Burg EH; Bonga SE; Flik G J Exp Biol; 2003 Jul; 206(Pt 13):2273-80. PubMed ID: 12771175 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]