BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

234 related articles for article (PubMed ID: 12388468)

  • 1. Relationship between alertness, performance, and body temperature in humans.
    Wright KP; Hull JT; Czeisler CA
    Am J Physiol Regul Integr Comp Physiol; 2002 Dec; 283(6):R1370-7. PubMed ID: 12388468
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The influence of subjective alertness and motivation on human performance independent of circadian and homeostatic regulation.
    Hull JT; Wright KP; Czeisler CA
    J Biol Rhythms; 2003 Aug; 18(4):329-38. PubMed ID: 12932085
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Time course of neurobehavioral alertness during extended wakefulness in morning- and evening-type healthy sleepers.
    Taillard J; Philip P; Claustrat B; Capelli A; Coste O; Chaumet G; Sagaspe P
    Chronobiol Int; 2011 Jul; 28(6):520-7. PubMed ID: 21797780
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Short-term memory, alertness and performance: a reappraisal of their relationship to body temperature.
    Johnson MP; Duffy JF; Dijk DJ; Ronda JM; Dyal CM; Czeisler CA
    J Sleep Res; 1992 Mar; 1(1):24-9. PubMed ID: 10607021
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Circadian and sleep/wake dependent aspects of subjective alertness and cognitive performance.
    Dijk DJ; Duffy JF; Czeisler CA
    J Sleep Res; 1992 Jun; 1(2):112-7. PubMed ID: 10607036
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of menstrual cycle phase and oral contraceptives on alertness, cognitive performance, and circadian rhythms during sleep deprivation.
    Wright KP; Badia P
    Behav Brain Res; 1999 Sep; 103(2):185-94. PubMed ID: 10513586
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Prediction of Vigilant Attention and Cognitive Performance Using Self-Reported Alertness, Circadian Phase, Hours since Awakening, and Accumulated Sleep Loss.
    Bermudez EB; Klerman EB; Czeisler CA; Cohen DA; Wyatt JK; Phillips AJ
    PLoS One; 2016; 11(3):e0151770. PubMed ID: 27019198
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Circadian temperature and melatonin rhythms, sleep, and neurobehavioral function in humans living on a 20-h day.
    Wyatt JK; Ritz-De Cecco A; Czeisler CA; Dijk DJ
    Am J Physiol; 1999 Oct; 277(4 Pt 2):R1152-63. PubMed ID: 10516257
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mismatch between subjective alertness and objective performance under sleep restriction is greatest during the biological night.
    Zhou X; Ferguson SA; Matthews RW; Sargent C; Darwent D; Kennaway DJ; Roach GD
    J Sleep Res; 2012 Feb; 21(1):40-9. PubMed ID: 21564364
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sleep inertia, sleep homeostatic and circadian influences on higher-order cognitive functions.
    Burke TM; Scheer FAJL; Ronda JM; Czeisler CA; Wright KP
    J Sleep Res; 2015 Aug; 24(4):364-371. PubMed ID: 25773686
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sex differences in the circadian regulation of sleep and waking cognition in humans.
    Santhi N; Lazar AS; McCabe PJ; Lo JC; Groeger JA; Dijk DJ
    Proc Natl Acad Sci U S A; 2016 May; 113(19):E2730-9. PubMed ID: 27091961
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Differential 24-hour variation of alertness and subjective tension in process controllers: investigation of the relationship with body temperature and heart rate.
    Cariou M; Galy E; Mélan C
    Chronobiol Int; 2008 Jul; 25(4):597-609. PubMed ID: 18622818
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of caffeine on skin and core temperatures, alertness, and recovery sleep during circadian misalignment.
    McHill AW; Smith BJ; Wright KP
    J Biol Rhythms; 2014 Apr; 29(2):131-43. PubMed ID: 24682207
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sleepiness and Cognitive Performance among Younger and Older Adolescents across a 28-Hour Forced Desynchrony Protocol.
    Wu LJ; Acebo C; Seifer R; Carskadon MA
    Sleep; 2015 Dec; 38(12):1965-72. PubMed ID: 26194564
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A parallelism between human body temperature and performance independent of the endogenous circadian pacemaker.
    Monk TH; Carrier J
    J Biol Rhythms; 1998 Apr; 13(2):113-22. PubMed ID: 9554573
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cognition in circadian rhythm sleep disorders.
    Reid KJ; McGee-Koch LL; Zee PC
    Prog Brain Res; 2011; 190():3-20. PubMed ID: 21531242
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Contribution of core body temperature, prior wake time, and sleep stages to cognitive throughput performance during forced desynchrony.
    Darwent D; Ferguson SA; Sargent C; Paech GM; Williams L; Zhou X; Matthews RW; Dawson D; Kennaway DJ; Roach GD
    Chronobiol Int; 2010 Jul; 27(5):898-910. PubMed ID: 20636204
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Circadian rhythms and their association with body temperature and time awake when performing a simple task with the dominant and non-dominant hand.
    Edwards B; Waterhouse J; Reilly T
    Chronobiol Int; 2008 Feb; 25(1):115-32. PubMed ID: 18293153
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Complete or partial circadian re-entrainment improves performance, alertness, and mood during night-shift work.
    Crowley SJ; Lee C; Tseng CY; Fogg LF; Eastman CI
    Sleep; 2004 Sep; 27(6):1077-87. PubMed ID: 15532201
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Impact of sleep inertia on visual selective attention for rare targets and the influence of chronotype.
    Ritchie HK; Burke TM; Dear TB; Mchill AW; Axelsson J; Wright KP
    J Sleep Res; 2017 Oct; 26(5):551-558. PubMed ID: 28378363
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.