BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

234 related articles for article (PubMed ID: 12388468)

  • 21. Low-dose repeated caffeine administration for circadian-phase-dependent performance degradation during extended wakefulness.
    Wyatt JK; Cajochen C; Ritz-De Cecco A; Czeisler CA; Dijk DJ
    Sleep; 2004 May; 27(3):374-81. PubMed ID: 15164887
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Sensitivity of the human circadian pacemaker to moderately bright light.
    Boivin DB; Duffy JF; Kronauer RE; Czeisler CA
    J Biol Rhythms; 1994; 9(3-4):315-31. PubMed ID: 7772798
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The effects of extended nap periods on cognitive, physiological and subjective responses under simulated night shift conditions.
    Davy J; Göbel M
    Chronobiol Int; 2018 Feb; 35(2):169-187. PubMed ID: 29144168
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Circadian rhythms in human performance and mood under constant conditions.
    Monk TH; Buysse DJ; Reynolds CF; Berga SL; Jarrett DB; Begley AE; Kupfer DJ
    J Sleep Res; 1997 Mar; 6(1):9-18. PubMed ID: 9125694
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Circadian variation of EEG power spectra in NREM and REM sleep in humans: dissociation from body temperature.
    Dijk DJ
    J Sleep Res; 1999 Sep; 8(3):189-95. PubMed ID: 10476005
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Interactive mathematical models of subjective alertness and cognitive throughput in humans.
    Jewett ME; Kronauer RE
    J Biol Rhythms; 1999 Dec; 14(6):588-97. PubMed ID: 10643756
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Temporal placement of a nap for alertness: contributions of circadian phase and prior wakefulness.
    Dinges DF; Orne MT; Whitehouse WG; Orne EC
    Sleep; 1987 Aug; 10(4):313-29. PubMed ID: 3659730
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Maintaining alertness and performance during sleep deprivation: modafinil versus caffeine.
    Wesensten NJ; Belenky G; Kautz MA; Thorne DR; Reichardt RM; Balkin TJ
    Psychopharmacology (Berl); 2002 Jan; 159(3):238-47. PubMed ID: 11862356
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Salivary levels of alpha-amylase are associated with neurobehavioral alertness during extended wakefulness, but not simulated night-shift work.
    Pajcin M; Banks S; Dorrian J; Gupta CC; Coates AM; Grant CL; White JM; Della Vedova CB
    Physiol Behav; 2019 May; 204():1-9. PubMed ID: 30731103
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The effect of a change in sleep-wakefulness timing, bright light and physical exercise interventions on 24-hour patterns of performance, mood and body temperature.
    Iskra-Golec I; Fafrowicz M; Marek T; Costa G; Folkard S; Foret J; Kundi M; Smith L
    J Hum Ergol (Tokyo); 2001 Dec; 30(1-2):261-6. PubMed ID: 14564893
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Circadian and sleep episode duration influences on cognitive performance following the process of awakening.
    Matchock RL
    Int Rev Neurobiol; 2010; 93():129-51. PubMed ID: 20970004
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The wake maintenance zone shows task dependent changes in cognitive function following one night without sleep.
    McMahon WR; Ftouni S; Drummond SPA; Maruff P; Lockley SW; Rajaratnam SMW; Anderson C
    Sleep; 2018 Oct; 41(10):. PubMed ID: 30169703
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Two circadian rhythms in the human electroencephalogram during wakefulness.
    Aeschbach D; Matthews JR; Postolache TT; Jackson MA; Giesen HA; Wehr TA
    Am J Physiol; 1999 Dec; 277(6):R1771-9. PubMed ID: 10600925
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A higher illuminance induces alertness even during office hours: findings on subjective measures, task performance and heart rate measures.
    Smolders KC; de Kort YA; Cluitmans PJ
    Physiol Behav; 2012 Aug; 107(1):7-16. PubMed ID: 22564492
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The influence of time awake and circadian rhythm upon performance on a frontal lobe task.
    Harrison Y; Jones K; Waterhouse J
    Neuropsychologia; 2007 Apr; 45(8):1966-72. PubMed ID: 17275040
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The influence of circadian phase and prior wake on neuromuscular function.
    Sargent C; Ferguson SA; Darwent D; Kennaway DJ; Roach GD
    Chronobiol Int; 2010 Jul; 27(5):911-21. PubMed ID: 20636205
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Alertness and psychomotor performance levels of marine pilots on an irregular work roster.
    Boudreau P; Lafrance S; Boivin DB
    Chronobiol Int; 2018 Jun; 35(6):773-784. PubMed ID: 29787295
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Sleep restriction masks the influence of the circadian process on sleep propensity.
    Sargent C; Darwent D; Ferguson SA; Kennaway DJ; Roach GD
    Chronobiol Int; 2012 Jun; 29(5):565-71. PubMed ID: 22621352
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The effect of 40 hours of constant wakefulness on number comparison performance.
    Steinborn MB; Bratzke D; Rolke B; Gordijn MC; Beersma DG; Ulrich R
    Chronobiol Int; 2010 Jun; 27(4):807-25. PubMed ID: 20560712
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The effects of a split sleep-wake schedule on neurobehavioural performance and predictions of performance under conditions of forced desynchrony.
    Kosmadopoulos A; Sargent C; Darwent D; Zhou X; Dawson D; Roach GD
    Chronobiol Int; 2014 Dec; 31(10):1209-17. PubMed ID: 25222348
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.