These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

235 related articles for article (PubMed ID: 12388468)

  • 41. The effect of 40 hours of constant wakefulness on number comparison performance.
    Steinborn MB; Bratzke D; Rolke B; Gordijn MC; Beersma DG; Ulrich R
    Chronobiol Int; 2010 Jun; 27(4):807-25. PubMed ID: 20560712
    [TBL] [Abstract][Full Text] [Related]  

  • 42. The effects of a split sleep-wake schedule on neurobehavioural performance and predictions of performance under conditions of forced desynchrony.
    Kosmadopoulos A; Sargent C; Darwent D; Zhou X; Dawson D; Roach GD
    Chronobiol Int; 2014 Dec; 31(10):1209-17. PubMed ID: 25222348
    [TBL] [Abstract][Full Text] [Related]  

  • 43. [Circadian rhythms in body temperature and sleep].
    Honma K
    Nihon Rinsho; 2013 Dec; 71(12):2076-81. PubMed ID: 24437258
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Paradoxical timing of the circadian rhythm of sleep propensity serves to consolidate sleep and wakefulness in humans.
    Dijk DJ; Czeisler CA
    Neurosci Lett; 1994 Jan; 166(1):63-8. PubMed ID: 8190360
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Timed exposure to bright light improves sleep and alertness during simulated night shifts.
    Dawson D; Campbell SS
    Sleep; 1991 Dec; 14(6):511-6. PubMed ID: 1798884
    [TBL] [Abstract][Full Text] [Related]  

  • 46. [Non-photic entrainment of human circadian clock--effects of forced sleep-wake schedule on the circadian rhythm in plasma melatonin].
    Nakamura K
    Hokkaido Igaku Zasshi; 1996 May; 71(3):403-22. PubMed ID: 8752534
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Acute effects of different light spectra on simulated night-shift work without circadian alignment.
    Canazei M; Pohl W; Bliem HR; Weiss EM
    Chronobiol Int; 2017; 34(3):303-317. PubMed ID: 27579732
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Circadian and wakefulness-sleep modulation of cognition in humans.
    Wright KP; Lowry CA; Lebourgeois MK
    Front Mol Neurosci; 2012; 5():50. PubMed ID: 22529774
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Mood, alertness, and performance in response to sleep deprivation and recovery sleep in experienced shiftworkers versus non-shiftworkers.
    Wehrens SM; Hampton SM; Kerkhofs M; Skene DJ
    Chronobiol Int; 2012 Jun; 29(5):537-48. PubMed ID: 22621349
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Circadian rhythms in human performance and affective state.
    Folkard S; Marks M; Minors DS; Waterhouse JM
    Acta Psychiatr Belg; 1985; 85(5):568-81. PubMed ID: 4091019
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Insights into behavioral vulnerability to differential sleep pressure and circadian phase from a functional ADA polymorphism.
    Reichert CF; Maire M; Gabel V; Viola AU; Kolodyazhniy V; Strobel W; Götz T; Bachmann V; Landolt HP; Cajochen C; Schmidt C
    J Biol Rhythms; 2014 Apr; 29(2):119-30. PubMed ID: 24682206
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Boredom effects on sleepiness/alertness in the early afternoon vs. early evening and interactions with warm ambient temperature.
    Mavjee V; Horne JA
    Br J Psychol; 1994 Aug; 85 ( Pt 3)():317-33. PubMed ID: 7921744
    [TBL] [Abstract][Full Text] [Related]  

  • 53. [Circadian regulation of the sleep-wake cycle].
    Benoit O; Foret J
    Neurophysiol Clin; 1988 Sep; 18(5):403-31. PubMed ID: 3185463
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Investigating the interaction between the homeostatic and circadian processes of sleep-wake regulation for the prediction of waking neurobehavioural performance.
    Van Dongen HP; Dinges DF
    J Sleep Res; 2003 Sep; 12(3):181-7. PubMed ID: 12941057
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Time of day effects on neurobehavioral performance during chronic sleep restriction.
    Mollicone DJ; Van Dongen HP; Rogers NL; Banks S; Dinges DF
    Aviat Space Environ Med; 2010 Aug; 81(8):735-44. PubMed ID: 20681233
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Randomized trial of polychromatic blue-enriched light for circadian phase shifting, melatonin suppression, and alerting responses.
    Hanifin JP; Lockley SW; Cecil K; West K; Jablonski M; Warfield B; James M; Ayers M; Byrne B; Gerner E; Pineda C; Rollag M; Brainard GC
    Physiol Behav; 2019 Jan; 198():57-66. PubMed ID: 30296404
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Circadian Rhythms in Attention.
    Valdez P
    Yale J Biol Med; 2019 Mar; 92(1):81-92. PubMed ID: 30923475
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Human brain patterns underlying vigilant attention: impact of sleep debt, circadian phase and attentional engagement.
    Maire M; Reichert CF; Gabel V; Viola AU; Phillips C; Berthomier C; Borgwardt S; Cajochen C; Schmidt C
    Sci Rep; 2018 Jan; 8(1):970. PubMed ID: 29343686
    [TBL] [Abstract][Full Text] [Related]  

  • 59. The dependence of onset and duration of sleep on th circadian rhythm of rectal temperature.
    Zulley J; Wever R; Aschoff J
    Pflugers Arch; 1981 Oct; 391(4):314-8. PubMed ID: 7312563
    [TBL] [Abstract][Full Text] [Related]  

  • 60. The effect of consecutive transmeridian flights on alertness, sleep-wake cycles and sleepiness: A case study.
    Gordon CJ; Comas M; Postnova S; Miller CB; Roy D; J Bartlett D; R Grunstein R
    Chronobiol Int; 2018 Oct; 35(11):1471-1480. PubMed ID: 29993295
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.