These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 12388475)

  • 1. Localization and function of ATP-sensitive potassium channels in human skeletal muscle.
    Nielsen JJ; Kristensen M; Hellsten Y; Bangsbo J; Juel C
    Am J Physiol Regul Integr Comp Physiol; 2003 Feb; 284(2):R558-63. PubMed ID: 12388475
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Glibenclamide selectively blocks ATP-sensitive K+ channels reconstituted from skeletal muscle.
    Light PE; French RJ
    Eur J Pharmacol; 1994 Jul; 259(3):219-22. PubMed ID: 7982447
    [TBL] [Abstract][Full Text] [Related]  

  • 3. ATP-sensitive potassium channels in smooth muscle cells from guinea pig urinary bladder.
    Bonev AD; Nelson MT
    Am J Physiol; 1993 May; 264(5 Pt 1):C1190-200. PubMed ID: 8498480
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of high-intensity intermittent training on potassium kinetics and performance in human skeletal muscle.
    Nielsen JJ; Mohr M; Klarskov C; Kristensen M; Krustrup P; Juel C; Bangsbo J
    J Physiol; 2004 Feb; 554(Pt 3):857-70. PubMed ID: 14634198
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Vascular ATP-sensitive K
    Colburn TD; Weber RE; Hageman KS; Caldwell JT; Schulze KM; Ade CJ; Behnke BJ; Poole DC; Musch TI
    J Physiol; 2020 Nov; 598(21):4843-4858. PubMed ID: 32798233
    [TBL] [Abstract][Full Text] [Related]  

  • 6. ATP-sensitive K+ channels of skeletal muscle fibers from young adult and aged rats: possible involvement of thiol-dependent redox mechanisms in the age-related modifications of their biophysical and pharmacological properties.
    Tricarico D; Camerino DC
    Mol Pharmacol; 1994 Oct; 46(4):754-61. PubMed ID: 7969056
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Similarity of ATP-dependent K+ channels in skeletal muscle fibres from normal and mutant mdx mice.
    Allard B; Rougier O
    J Physiol; 1997 Jan; 498 ( Pt 2)(Pt 2):319-25. PubMed ID: 9032681
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Different sulfonylurea and ATP sensitivity characterizes the juvenile and the adult form of KATP channel complex of rat skeletal muscle.
    Tricarico D; Petruzzi R; Conte Camerino DC
    Eur J Pharmacol; 1997 Mar; 321(3):369-78. PubMed ID: 9085050
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Kinetic analysis of the inhibitory effect of glibenclamide on KATP channels of mammalian skeletal muscle.
    Barrett-Jolley R; Davies NW
    J Membr Biol; 1997 Feb; 155(3):257-62. PubMed ID: 9050449
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Inhibition of KATP channel activity augments baroreflex-mediated vasoconstriction in exercising human skeletal muscle.
    Keller DM; Ogoh S; Greene S; Olivencia-Yurvati A; Raven PB
    J Physiol; 2004 Nov; 561(Pt 1):273-82. PubMed ID: 15345750
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Metabolic alkalosis reduces exercise-induced acidosis and potassium accumulation in human skeletal muscle interstitium.
    Street D; Nielsen JJ; Bangsbo J; Juel C
    J Physiol; 2005 Jul; 566(Pt 2):481-9. PubMed ID: 15860529
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Activation of ATP-dependent K+ channels by metabolic poisoning in adult mouse skeletal muscle: role of intracellular Mg(2+) and pH.
    Allard B; Lazdunski M; Rougier O
    J Physiol; 1995 Jun; 485 ( Pt 2)(Pt 2):283-96. PubMed ID: 7666359
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sexual dimorphism in vascular ATP-sensitive K
    Colburn TD; Weber RE; Schulze KM; Hageman KS; Horn AG; Behnke BJ; Poole DC; Musch TI
    J Physiol; 2021 Jul; 599(13):3279-3293. PubMed ID: 34101850
    [TBL] [Abstract][Full Text] [Related]  

  • 14. ATP-Sensitive potassium channels modulate glucose transport in cultured human skeletal muscle cells.
    Wasada T; Yano T; Ohta M; Yui N; Iwamoto Y
    Endocr J; 2001 Jun; 48(3):369-75. PubMed ID: 11523909
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification and properties of ATP-sensitive potassium channels in myocytes from rabbit Purkinje fibres.
    Light PE; Cordeiro JM; French RJ
    Cardiovasc Res; 1999 Nov; 44(2):356-69. PubMed ID: 10690312
    [TBL] [Abstract][Full Text] [Related]  

  • 16. KATP channel deficiency in mouse flexor digitorum brevis causes fibre damage and impairs Ca2+ release and force development during fatigue in vitro.
    Cifelli C; Bourassa F; GariƩpy L; Banas K; Benkhalti M; Renaud JM
    J Physiol; 2007 Jul; 582(Pt 2):843-57. PubMed ID: 17510189
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mitochondrial KATP channels in hindlimb remote ischemic preconditioning of skeletal muscle against infarction.
    Moses MA; Addison PD; Neligan PC; Ashrafpour H; Huang N; Zair M; Rassuli A; Forrest CR; Grover GJ; Pang CY
    Am J Physiol Heart Circ Physiol; 2005 Feb; 288(2):H559-67. PubMed ID: 15458954
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of ATP-sensitive potassium channel regulators on chloride channels in the sarcoplasmic reticulum vesicles from rabbit skeletal muscle.
    Kourie JI
    J Membr Biol; 1998 Jul; 164(1):47-58. PubMed ID: 9636243
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Diverse effects of pinacidil on KATP channels in mouse skeletal muscle in the presence of different nucleotides.
    Hehl S; Neumcke B
    Cardiovasc Res; 1994 Jun; 28(6):841-6. PubMed ID: 7923289
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Acute systemic hypoxia elevates venous but not interstitial potassium of dog skeletal muscle.
    Mo FM; Ballard HJ
    Am J Physiol Heart Circ Physiol; 2005 Oct; 289(4):H1710-8. PubMed ID: 15894574
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.