These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 12389729)

  • 21. Evaluating the targets of selection during character displacement.
    Martin RA; Pfennig DW
    Evolution; 2011 Oct; 65(10):2946-58. PubMed ID: 21967434
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Reinforcement generates reproductive isolation between neighbouring conspecific populations of spadefoot toads.
    Pfennig KS; Rice AM
    Proc Biol Sci; 2014 Aug; 281(1789):20140949. PubMed ID: 24990680
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A suite of molecular markers for identifying species, detecting introgression and describing population structure in spadefoot toads (Spea spp.).
    Pfennig KS; Allenby A; Martin RA; Monroy A; Jones CD
    Mol Ecol Resour; 2012 Sep; 12(5):909-17. PubMed ID: 22564443
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Mating patterns and post-mating isolation in three cryptic species of the Engystomops petersi species complex.
    Trillo PA; Narvaez AE; Ron SR; Hoke KL
    PLoS One; 2017; 12(4):e0174743. PubMed ID: 28388628
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Influence of sprint speed and body size on predator avoidance in New Mexican spadefoot toads (Spea multiplicata).
    Arendt JD
    Oecologia; 2009 Mar; 159(2):455-61. PubMed ID: 18987891
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A maternal effect mediates rapid population divergence and character displacement in spadefoot toads.
    Pfennig DW; Martin RA
    Evolution; 2009 Apr; 63(4):898-909. PubMed ID: 19154374
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Reinforcement drives rapid allopatric speciation.
    Hoskin CJ; Higgie M; McDonald KR; Moritz C
    Nature; 2005 Oct; 437(7063):1353-6. PubMed ID: 16251964
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Genetic accommodation via modified endocrine signalling explains phenotypic divergence among spadefoot toad species.
    Kulkarni SS; Denver RJ; Gomez-Mestre I; Buchholz DR
    Nat Commun; 2017 Oct; 8(1):993. PubMed ID: 29051478
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Postmating-prezygotic isolation is not an important source of selection for reinforcement within and between species in Drosophila pseudoobscura and D. persimilis.
    Lorch PD; Servedio MR
    Evolution; 2005 May; 59(5):1039-45. PubMed ID: 16136803
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Fitness consequences of parental compatibility in the frog Crinia georgiana.
    Dziminski MA; Roberts JD; Simmons LW
    Evolution; 2008 Apr; 62(4):879-86. PubMed ID: 18208566
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Population differentiation at a regional scale in spadefoot toads: contributions of distance and divergent selective environments.
    Rice AM; McQuillan MA; Seears HA; Warren JA
    Curr Zool; 2016 Apr; 62(2):193-206. PubMed ID: 29491906
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Climate Change Alters Sexual Signaling in a Desert-Adapted Frog.
    Calabrese GM; Pfennig KS
    Am Nat; 2023 Jan; 201(1):91-105. PubMed ID: 36524933
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Relative abundance and the species-specific reinforcement of male mating preference in the Chrysochus (Coleoptera: Chrysomelidae) hybrid zone.
    Peterson MA; Honchak BM; Locke SE; Beeman TE; Mendoza J; Green J; Buckingham KJ; White MA; Monsen KJ
    Evolution; 2005 Dec; 59(12):2639-55. PubMed ID: 16526511
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Character displacement as the "best of a bad situation": fitness trade-offs resulting from selection to minimize resource and mate competition.
    Pfennig KS; Pfennig DW
    Evolution; 2005 Oct; 59(10):2200-8. PubMed ID: 16405163
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Asymmetrical reinforcement and Wolbachia infection in Drosophila.
    Jaenike J; Dyer KA; Cornish C; Minhas MS
    PLoS Biol; 2006 Oct; 4(10):e325. PubMed ID: 17032063
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Sexual conflict and speciation.
    Parker GA; Partridge L
    Philos Trans R Soc Lond B Biol Sci; 1998 Feb; 353(1366):261-74. PubMed ID: 9533125
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Male sexual signal predicts phenotypic plasticity in offspring: implications for the evolution of plasticity and local adaptation.
    Kelly PW; Pfennig DW; de la Serna Buzón S; Pfennig KS
    Philos Trans R Soc Lond B Biol Sci; 2019 Mar; 374(1768):20180179. PubMed ID: 30966958
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Variation in hybrid gene expression: Implications for the evolution of genetic incompatibilities in interbreeding species.
    Seidl F; Levis NA; Jones CD; Monroy-Eklund A; Ehrenreich IM; Pfennig KS
    Mol Ecol; 2019 Oct; 28(20):4667-4679. PubMed ID: 31541560
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Reproductive isolation between two darter species is enhanced and asymmetric in sympatry.
    Zhou M; Fuller RC
    J Fish Biol; 2014 May; 84(5):1389-400. PubMed ID: 24724945
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Reinforcement in chorus frogs: lifetime fitness estimates including intrinsic natural selection and sexual selection against hybrids.
    Lemmon EM; Lemmon AR
    Evolution; 2010 Jun; 64(6):1748-61. PubMed ID: 20100218
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.