BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 1238994)

  • 21. Effects of adenosine infusion into renal interstitium on renal hemodynamics.
    Pawlowska D; Granger JP; Knox FG
    Am J Physiol; 1987 Apr; 252(4 Pt 2):F678-82. PubMed ID: 3565578
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Blood pressure early in diabetes depends on a balance between glomerular filtration rate and the renin-angiotensin system.
    Rojas M; Bell TD; Sturgis LC; Springfield V; Janardhanan R; Fleming C; Brands MW
    Am J Hypertens; 2006 Dec; 19(12):1249-55. PubMed ID: 17161770
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Superoxide formation and interaction with nitric oxide modulate systemic arterial pressure and renal function in salt-depleted dogs.
    Dutta UK; Lane J; Roberts LJ; Majid DS
    Exp Biol Med (Maywood); 2006 Mar; 231(3):269-76. PubMed ID: 16514172
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Role for intrarenal adenosine in the renal hemodynamic response to contrast media.
    Arend LJ; Bakris GL; Burnett JC; Megerian C; Spielman WS
    J Lab Clin Med; 1987 Oct; 110(4):406-11. PubMed ID: 3655519
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Adenosine alters glomerular filtration control by angiotensin II.
    Hall JE; Granger JP
    Am J Physiol; 1986 May; 250(5 Pt 2):F917-23. PubMed ID: 3706543
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Lack of a role of neuronal nitric oxide synthase in the regulation of the renal function in rats fed a low-sodium diet.
    Vanecková I; Kramer HJ; Malý J; Bäcker A; Bokemeyer D; Cervenka L
    Kidney Blood Press Res; 2002; 25(4):224-31. PubMed ID: 12424424
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The renal blood flow and the glomerular filtration rate of anaesthetized dogs during acute changes in plasma sodium concentration.
    Nashat FS; Tappin JW; Wilcox CS
    J Physiol; 1976 Apr; 256(3):731-45. PubMed ID: 5603
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Control of renal hemodynamics and glomerular filtration rate in chronic hypercalcemia. Role of prostaglandins, renin-angiotensin system, and calcium.
    Levi M; Ellis MA; Berl T
    J Clin Invest; 1983 Jun; 71(6):1624-32. PubMed ID: 6345587
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Renal effects of adenosine and their inhibition by theophylline in dogs.
    Osswald H
    Naunyn Schmiedebergs Arch Pharmacol; 1975; 288(1):79-86. PubMed ID: 1161043
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Role of angiotensin AT1 and AT2 receptors in mediating the renal effects of angiotensin II in the anaesthetized dog.
    Clark KL; Robertson MJ; Drew GM
    Br J Pharmacol; 1993 May; 109(1):148-56. PubMed ID: 8495237
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Role of bradykinin B2 receptors in the developmental changes of renal hemodynamics in the neonatal rat.
    el-Dahr SS; Yosipiv IV; Lewis L; Mitchell KD
    Am J Physiol; 1995 Dec; 269(6 Pt 2):F786-92. PubMed ID: 8594872
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Effects of brain natriuretic peptide on renin secretion in normal and hypertonic saline-infused kidney.
    Akabane S; Matsushima Y; Matsuo H; Kawamura M; Imanishi M; Omae T
    Eur J Pharmacol; 1991 Jun; 198(2-3):143-8. PubMed ID: 1864303
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Maintenance of renal autoregulation during infusion of aminophylline or adenosine.
    Premen AJ; Hall JE; Mizelle HL; Cornell JE
    Am J Physiol; 1985 Mar; 248(3 Pt 2):F366-73. PubMed ID: 2983569
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Effects of ANF infusion on the renal responses to lower-body negative pressure in humans.
    Mauran P; Pham I; Sediame S; Jolly D; Chabrier PE; Carayon A; Andrivet P; Adnot S
    J Cardiovasc Pharmacol; 1998 May; 31(5):669-76. PubMed ID: 9593065
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Potassium diet as a determinant for the renal response to systemic potassium channel modulation in anesthetized rats.
    Vallon V; Kirschenmann D; Brenner I; Albinus M; Osswald H
    Naunyn Schmiedebergs Arch Pharmacol; 1998 Aug; 358(2):245-52. PubMed ID: 9750011
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Renal responses of the nonclipped kidney of two-kidney/one-clip Goldblatt hypertensive rats to type 1 angiotensin II receptor blockade with candesartan.
    Cervenka L; Navar LG
    J Am Soc Nephrol; 1999 Jan; 10 Suppl 11():S197-201. PubMed ID: 9892163
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Renal actions of the selective angiotensin AT2 receptor ligands CGP 42112B and PD 123319 in the sodium-depleted rat.
    Macari D; Bottari S; Whitebread S; De Gasparo M; Levens N
    Eur J Pharmacol; 1993 Nov; 249(1):85-93. PubMed ID: 8282023
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Effects of angiotensin II on renal sodium handling and diluting capacity in man pretreated with high-salt diet and enalapril.
    Vos PF; Koomans HA; Boer P; Dorhout Mees EJ
    Nephrol Dial Transplant; 1992; 7(10):991-6. PubMed ID: 1331894
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Changes in renal vascular sensitivity and arterial pressure associated with sodium intake during long-term intrarenal norepinephrine infusion in dogs.
    Cowley AW; Lohmeier TE
    Hypertension; 1979; 1(6):549-58. PubMed ID: 396248
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Influence of angiotensin II on pressure natriuresis and renal hemodynamics in volume-expanded rats.
    Mattson DL; Raff H; Roman RJ
    Am J Physiol; 1991 Jun; 260(6 Pt 2):R1200-9. PubMed ID: 2058747
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.