These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
177 related articles for article (PubMed ID: 12390014)
41. Target-induced conformational adaptation of calmodulin revealed by the crystal structure of a complex with nematode Ca(2+)/calmodulin-dependent kinase kinase peptide. Kurokawa H; Osawa M; Kurihara H; Katayama N; Tokumitsu H; Swindells MB; Kainosho M; Ikura M J Mol Biol; 2001 Sep; 312(1):59-68. PubMed ID: 11545585 [TBL] [Abstract][Full Text] [Related]
42. Backbone and side chain dynamics of mutant calmodulin-peptide complexes. Igumenova TI; Lee AL; Wand AJ Biochemistry; 2005 Sep; 44(38):12627-39. PubMed ID: 16171378 [TBL] [Abstract][Full Text] [Related]
43. Calmodulin tagging provides a general method of using lanthanide induced magnetic field orientation to observe residual dipolar couplings in proteins in solution. Feeny J; Birdsall B; Bradbury AF; Biekofsky RR; Bayley PM J Biomol NMR; 2001 Sep; 21(1):41-8. PubMed ID: 11693567 [TBL] [Abstract][Full Text] [Related]
44. Millisecond Time-Resolved Solid-State NMR Reveals a Two-Stage Molecular Mechanism for Formation of Complexes between Calmodulin and a Target Peptide from Myosin Light Chain Kinase. Jeon J; Yau WM; Tycko R J Am Chem Soc; 2020 Dec; 142(50):21220-21232. PubMed ID: 33280387 [TBL] [Abstract][Full Text] [Related]
45. Solution structure of calmodulin-W-7 complex: the basis of diversity in molecular recognition. Osawa M; Swindells MB; Tanikawa J; Tanaka T; Mase T; Furuya T; Ikura M J Mol Biol; 1998 Feb; 276(1):165-76. PubMed ID: 9514729 [TBL] [Abstract][Full Text] [Related]
46. NMR approaches for monitoring domain orientations in calcium-binding proteins in solution using partial replacement of Ca2+ by Tb3+. Biekofsky RR; Muskett FW; Schmidt JM; Martin SR; Browne JP; Bayley PM; Feeney J FEBS Lett; 1999 Nov; 460(3):519-26. PubMed ID: 10556528 [TBL] [Abstract][Full Text] [Related]
47. A general strategy to characterize calmodulin-calcium complexes involved in CaM-target recognition: DAPK and EGFR calmodulin binding domains interact with different calmodulin-calcium complexes. Dagher R; Peng S; Gioria S; Fève M; Zeniou M; Zimmermann M; Pigault C; Haiech J; Kilhoffer MC Biochim Biophys Acta; 2011 May; 1813(5):1059-67. PubMed ID: 21115073 [TBL] [Abstract][Full Text] [Related]
48. Purification and characterization of Ca2+/calmodulin-dependent protein kinase IV kinase from rat brain. Okuno S; Kitani T; Fujisawa H J Biochem; 1994 Oct; 116(4):923-30. PubMed ID: 7883770 [TBL] [Abstract][Full Text] [Related]
49. Effects of myosin light chain kinase and peptides on Ca2+ exchange with the N- and C-terminal Ca2+ binding sites of calmodulin. Johnson JD; Snyder C; Walsh M; Flynn M J Biol Chem; 1996 Jan; 271(2):761-7. PubMed ID: 8557684 [TBL] [Abstract][Full Text] [Related]
50. Preparation and characterization of calmodulin-dependent protein kinase IV (CaM-kinase IV) free of CaM-kinase IV kinase from rat cerebral cortex. Kameshita I; Fujisawa H J Biochem; 1995 Jan; 117(1):85-90. PubMed ID: 7775403 [TBL] [Abstract][Full Text] [Related]
51. Molecular and biochemical characterization of a calcium/calmodulin-binding protein kinase from rice. Zhang L; Liu BF; Liang S; Jones RL; Lu YT Biochem J; 2002 Nov; 368(Pt 1):145-57. PubMed ID: 12160464 [TBL] [Abstract][Full Text] [Related]
52. Study of conformational rearrangement and refinement of structural homology models by the use of heteronuclear dipolar couplings. Chou JJ; Li S; Bax A J Biomol NMR; 2000 Nov; 18(3):217-27. PubMed ID: 11142512 [TBL] [Abstract][Full Text] [Related]
53. Regulatory mechanism of Ca2+/calmodulin-dependent protein kinase kinase. Tokumitsu H; Muramatsu Ma; Ikura M; Kobayashi R J Biol Chem; 2000 Jun; 275(26):20090-5. PubMed ID: 10770941 [TBL] [Abstract][Full Text] [Related]
54. Regulation of Ca2+/calmodulin-dependent protein kinase IV (CaM-kinase IV) by changing its susceptibility to phosphorylation by CaM-kinase kinases. Okuno S; Kitani T; Fujisawa H J Biochem; 1997 Nov; 122(5):897-900. PubMed ID: 9443802 [TBL] [Abstract][Full Text] [Related]
55. Phosphorylation of calmodulin in the first calcium-binding pocket by myosin light chain kinase. Davis HW; Crimmins DL; Thoma RS; Garcia JG Arch Biochem Biophys; 1996 Aug; 332(1):101-9. PubMed ID: 8806714 [TBL] [Abstract][Full Text] [Related]
56. Investigating the high affinity and low sequence specificity of calmodulin binding to its targets. Afshar M; Caves LS; Guimard L; Hubbard RE; Calas B; Grassy G; Haiech J J Mol Biol; 1994 Dec; 244(5):554-71. PubMed ID: 7990140 [TBL] [Abstract][Full Text] [Related]
57. The multifunctional Ca2+/calmodulin-dependent protein kinases. Schulman H Curr Opin Cell Biol; 1993 Apr; 5(2):247-53. PubMed ID: 8507497 [TBL] [Abstract][Full Text] [Related]
58. Spectroscopic characterization of a high-affinity calmodulin-target peptide hybrid molecule. Martin SR; Bayley PM; Brown SE; Porumb T; Zhang M; Ikura M Biochemistry; 1996 Mar; 35(11):3508-17. PubMed ID: 8639501 [TBL] [Abstract][Full Text] [Related]
59. Full activation of brain calmodulin-dependent protein kinase IV requires phosphorylation of the amino-terminal serine-rich region by calmodulin-dependent protein kinase IV kinase. Okuno S; Kitani T; Fujisawa H J Biochem; 1995 Apr; 117(4):686-90. PubMed ID: 7592527 [TBL] [Abstract][Full Text] [Related]
60. Munc13-like skMLCK variants cannot mimic the unique calmodulin binding mode of Munc13 as evidenced by chemical cross-linking and mass spectrometry. Herbst S; Maucher D; Schneider M; Ihling CH; Jahn O; Sinz A PLoS One; 2013; 8(10):e75119. PubMed ID: 24130683 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]