BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 12390015)

  • 1. Structural basis for CO2 fixation by a novel member of the disulfide oxidoreductase family of enzymes, 2-ketopropyl-coenzyme M oxidoreductase/carboxylase.
    Nocek B; Jang SB; Jeong MS; Clark DD; Ensign SA; Peters JW
    Biochemistry; 2002 Oct; 41(43):12907-13. PubMed ID: 12390015
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterization of five catalytic activities associated with the NADPH:2-ketopropyl-coenzyme M [2-(2-ketopropylthio)ethanesulfonate] oxidoreductase/carboxylase of the Xanthobacter strain Py2 epoxide carboxylase system.
    Clark DD; Allen JR; Ensign SA
    Biochemistry; 2000 Feb; 39(6):1294-304. PubMed ID: 10684609
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Roles of the redox-active disulfide and histidine residues forming a catalytic dyad in reactions catalyzed by 2-ketopropyl coenzyme M oxidoreductase/carboxylase.
    Kofoed MA; Wampler DA; Pandey AS; Peters JW; Ensign SA
    J Bacteriol; 2011 Sep; 193(18):4904-13. PubMed ID: 21764916
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Crystallization and preliminary X-ray analysis of a NADPH 2-ketopropyl-coenzyme M oxidoreductase/carboxylase.
    Jang SB; Jeong MS; Clark DD; Ensign SA; Peters JW
    Acta Crystallogr D Biol Crystallogr; 2001 Mar; 57(Pt 3):445-7. PubMed ID: 11223527
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechanistic implications of the structure of the mixed-disulfide intermediate of the disulfide oxidoreductase, 2-ketopropyl-coenzyme M oxidoreductase/carboxylase.
    Pandey AS; Nocek B; Clark DD; Ensign SA; Peters JW
    Biochemistry; 2006 Jan; 45(1):113-20. PubMed ID: 16388586
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structural basis for carbon dioxide binding by 2-ketopropyl coenzyme M oxidoreductase/carboxylase.
    Pandey AS; Mulder DW; Ensign SA; Peters JW
    FEBS Lett; 2011 Feb; 585(3):459-64. PubMed ID: 21192936
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A catalytic dyad modulates conformational change in the CO
    Mattice JR; Shisler KA; DuBois JL; Peters JW; Bothner B
    J Biol Chem; 2022 May; 298(5):101884. PubMed ID: 35367206
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Substitution of a conserved catalytic dyad into 2-KPCC causes loss of carboxylation activity.
    Prussia GA; Gauss GH; Mus F; Conner L; DuBois JL; Peters JW
    FEBS Lett; 2016 Sep; 590(17):2991-6. PubMed ID: 27447465
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The reactive form of a C-S bond-cleaving, CO
    Streit BR; Mattice JR; Prussia GA; Peters JW; DuBois JL
    J Biol Chem; 2019 Mar; 294(13):5137-5145. PubMed ID: 30696768
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The unique Phe-His dyad of 2-ketopropyl coenzyme M oxidoreductase/carboxylase selectively promotes carboxylation and S-C bond cleavage.
    Prussia GA; Shisler KA; Zadvornyy OA; Streit BR; DuBois JL; Peters JW
    J Biol Chem; 2021 Aug; 297(2):100961. PubMed ID: 34265301
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structural basis for stereoselectivity in the (R)- and (S)-hydroxypropylthioethanesulfonate dehydrogenases.
    Krishnakumar AM; Nocek BP; Clark DD; Ensign SA; Peters JW
    Biochemistry; 2006 Jul; 45(29):8831-40. PubMed ID: 16846226
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterization of 2-bromoethanesulfonate as a selective inhibitor of the coenzyme m-dependent pathway and enzymes of bacterial aliphatic epoxide metabolism.
    Boyd JM; Ellsworth A; Ensign SA
    J Bacteriol; 2006 Dec; 188(23):8062-9. PubMed ID: 16997966
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanism of inhibition of aliphatic epoxide carboxylation by the coenzyme M analog 2-bromoethanesulfonate.
    Boyd JM; Clark DD; Kofoed MA; Ensign SA
    J Biol Chem; 2010 Aug; 285(33):25232-42. PubMed ID: 20551308
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Crystallization and preliminary X-ray analysis of an R-2-hydroxypropyl-coenzyme M dehydrogenase.
    Nocek B; Clark DD; Ensign SA; Peters JW
    Acta Crystallogr D Biol Crystallogr; 2002 Sep; 58(Pt 9):1470-3. PubMed ID: 12198305
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Crystal structures of S-HPCDH reveal determinants of stereospecificity for R- and S-hydroxypropyl-coenzyme M dehydrogenases.
    Bakelar JW; Sliwa DA; Johnson SJ
    Arch Biochem Biophys; 2013 May; 533(1-2):62-8. PubMed ID: 23474457
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Molecular basis for enantioselectivity in the (R)- and (S)-hydroxypropylthioethanesulfonate dehydrogenases, a unique pair of stereoselective short-chain dehydrogenases/reductases involved in aliphatic epoxide carboxylation.
    Sliwa DA; Krishnakumar AM; Peters JW; Ensign SA
    Biochemistry; 2010 Apr; 49(16):3487-98. PubMed ID: 20302306
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Getting a handle on the role of coenzyme M in alkene metabolism.
    Krishnakumar AM; Sliwa D; Endrizzi JA; Boyd ES; Ensign SA; Peters JW
    Microbiol Mol Biol Rev; 2008 Sep; 72(3):445-56. PubMed ID: 18772284
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Insights into the unique carboxylation reactions in the metabolism of propylene and acetone.
    Mus F; Wu HH; Alleman AB; Shisler KA; Zadvornyy OA; Bothner B; Dubois JL; Peters JW
    Biochem J; 2020 Jun; 477(11):2027-2038. PubMed ID: 32497192
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Two short-chain dehydrogenases confer stereoselectivity for enantiomers of epoxypropane in the multiprotein epoxide carboxylating systems of Xanthobacter strain Py2 and Nocardia corallina B276.
    Allen JR; Ensign SA
    Biochemistry; 1999 Jan; 38(1):247-56. PubMed ID: 9890905
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Flavoprotein disulfide reductases: advances in chemistry and function.
    Argyrou A; Blanchard JS
    Prog Nucleic Acid Res Mol Biol; 2004; 78():89-142. PubMed ID: 15210329
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.