These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 12390035)

  • 41. Cytochrome c folding traps are not due solely to histidine-heme ligation: direct demonstration of a role for N-terminal amino group-heme ligation.
    Hammack B; Godbole S; Bowler BE
    J Mol Biol; 1998 Feb; 275(5):719-24. PubMed ID: 9480763
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Reaction of hydrogen peroxide and peroxidase activity in carboxymethylated cytochrome c: spectroscopic and kinetic studies.
    Prasad S; Maiti NC; Mazumdar S; Mitra S
    Biochim Biophys Acta; 2002 Apr; 1596(1):63-75. PubMed ID: 11983422
    [TBL] [Abstract][Full Text] [Related]  

  • 43. The heme-containing N-fragment (residues 1-56) of cytochrome c is a bis-histidine functional system.
    Santucci R; Fiorucci L; Sinibaldi F; Polizio F; Desideri A; Ascoli F
    Arch Biochem Biophys; 2000 Jul; 379(2):331-6. PubMed ID: 10898952
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Role of heme axial ligands in the conformational stability of the native and molten globule states of horse cytochrome c.
    Hamada D; Kuroda Y; Kataoka M; Aimoto S; Yoshimura T; Goto Y
    J Mol Biol; 1996 Feb; 256(1):172-86. PubMed ID: 8609608
    [TBL] [Abstract][Full Text] [Related]  

  • 45. A new method for testing the functional dependence of unfolding free energy changes on denaturant concentration.
    Ahmad F; Taneja S; Yadav S; Haque SE
    J Biochem; 1994 Feb; 115(2):322-7. PubMed ID: 8206882
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Peroxidase activity of cytochrome c in its compact state depends on dynamics of the heme region.
    Tomášková N; Varhač R; Lysáková V; Musatov A; Sedlák E
    Biochim Biophys Acta Proteins Proteom; 2018 Nov; 1866(11):1073-1083. PubMed ID: 30282605
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Role of ligand substitution in ferrocytochrome c folding.
    Telford JR; Tezcan FA; Gray HB; Winkler JR
    Biochemistry; 1999 Feb; 38(6):1944-9. PubMed ID: 10026276
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Ligand exchange during cytochrome c folding.
    Yeh SR; Takahashi S; Fan B; Rousseau DL
    Nat Struct Biol; 1997 Jan; 4(1):51-6. PubMed ID: 8989324
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Conformational and thermodynamic characterization of the molten globule state occurring during unfolding of cytochromes-c by weak salt denaturants.
    Qureshi SH; Moza B; Yadav S; Ahmad F
    Biochemistry; 2003 Feb; 42(6):1684-95. PubMed ID: 12578383
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Folding character of cytochrome c studied by o-nitrobenzyl modification of methionine 65 and subsequent ultraviolet light irradiation.
    Okuno T; Hirota S; Yamauchi O
    Biochemistry; 2000 Jun; 39(25):7538-45. PubMed ID: 10858303
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Protein denaturation: a small-angle X-ray scattering study of the ensemble of unfolded states of cytochrome c.
    Segel DJ; Fink AL; Hodgson KO; Doniach S
    Biochemistry; 1998 Sep; 37(36):12443-51. PubMed ID: 9730816
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Photoionization of ferrocytochrome c by 248 nm laser light and the observation of the early stages of ferricytochrome c unfolding in the nanosecond-to-millisecond timescale.
    Candeias LP; Steenken S
    Photochem Photobiol; 1999 Jun; 69(6):677-80. PubMed ID: 10378006
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Refolding kinetics of cytochrome c(551) reveals a mechanistic difference between urea and guanidine.
    Gianni S; Brunori M; Travaglini-Allocatelli C
    Protein Sci; 2001 Aug; 10(8):1685-8. PubMed ID: 11468365
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Temperature and driving force dependence of the folding rate of reduced horse heart cytochrome c.
    Pascher T
    Biochemistry; 2001 May; 40(19):5812-20. PubMed ID: 11341847
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Fast folding of cytochrome c.
    Pierce MM; Nall BT
    Protein Sci; 1997 Mar; 6(3):618-27. PubMed ID: 9070444
    [TBL] [Abstract][Full Text] [Related]  

  • 56. [Y97V substitution in the horse cytochrome c causes accumulation of the equilibrium intermediate].
    Latypov RF; Dolgikh DA; Kirpichnikov MP; Ptitsyn OB; Roder H
    Biofizika; 2001; 46(1):46-52. PubMed ID: 11236561
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Side chain packing of the N- and C-terminal helices plays a critical role in the kinetics of cytochrome c folding.
    Colón W; Elöve GA; Wakem LP; Sherman F; Roder H
    Biochemistry; 1996 Apr; 35(17):5538-49. PubMed ID: 8611545
    [TBL] [Abstract][Full Text] [Related]  

  • 58. The effect of replacing the axial methionine ligand with a lysine residue in cytochrome c-550 from Paracoccus versutus assessed by X-ray crystallography and unfolding.
    Worrall JA; van Roon AM; Ubbink M; Canters GW
    FEBS J; 2005 May; 272(10):2441-55. PubMed ID: 15885094
    [TBL] [Abstract][Full Text] [Related]  

  • 59. pH dependence of formation of a partially unfolded state of a Lys 73 --> His variant of iso-1-cytochrome c: implications for the alkaline conformational transition of cytochrome c.
    Nelson CJ; Bowler BE
    Biochemistry; 2000 Nov; 39(44):13584-94. PubMed ID: 11063596
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Folding, conformational changes, and dynamics of cytochromes C probed by NMR spectroscopy.
    Bren KL; Kellogg JA; Kaur R; Wen X
    Inorg Chem; 2004 Dec; 43(25):7934-44. PubMed ID: 15578827
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.