BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 12390975)

  • 1. Localization of major gangliosides in the PNS: implications for immune neuropathies.
    Gong Y; Tagawa Y; Lunn MP; Laroy W; Heffer-Lauc M; Li CY; Griffin JW; Schnaar RL; Sheikh KA
    Brain; 2002 Nov; 125(Pt 11):2491-506. PubMed ID: 12390975
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The neuropathic potential of anti-GM1 autoantibodies is regulated by the local glycolipid environment in mice.
    Greenshields KN; Halstead SK; Zitman FM; Rinaldi S; Brennan KM; O'Leary C; Chamberlain LH; Easton A; Roxburgh J; Pediani J; Furukawa K; Furukawa K; Goodyear CS; Plomp JJ; Willison HJ
    J Clin Invest; 2009 Mar; 119(3):595-610. PubMed ID: 19221437
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Anti-ganglioside antibody internalization attenuates motor nerve terminal injury in a mouse model of acute motor axonal neuropathy.
    Fewou SN; Rupp A; Nickolay LE; Carrick K; Greenshields KN; Pediani J; Plomp JJ; Willison HJ
    J Clin Invest; 2012 Mar; 122(3):1037-51. PubMed ID: 22307327
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fcγ receptor-mediated inflammation inhibits axon regeneration.
    Zhang G; Bogdanova N; Gao T; Song JJ; Cragg MS; Glennie MJ; Sheikh KA
    PLoS One; 2014; 9(2):e88703. PubMed ID: 24523933
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Vascularization of the dorsal root ganglia and peripheral nerve of the mouse: implications for chemical-induced peripheral sensory neuropathies.
    Jimenez-Andrade JM; Herrera MB; Ghilardi JR; Vardanyan M; Melemedjian OK; Mantyh PW
    Mol Pain; 2008 Mar; 4():10. PubMed ID: 18353190
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Role of Gangliosides in Peripheral Pain Mechanisms.
    Sántha P; Dobos I; Kis G; Jancsó G
    Int J Mol Sci; 2020 Feb; 21(3):. PubMed ID: 32028715
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Glycosphingolipid depletion in PC12 cells using iminosugars protects neuronal membranes from anti-ganglioside antibody mediated injury.
    Townson KH; Speak AO; Greenshields KN; Goodyear CS; Willison HJ; Platt FM
    J Neuroimmunol; 2008 Oct; 203(1):33-8. PubMed ID: 18684516
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Blockade of Rho-associated kinase prevents inhibition of axon regeneration of peripheral nerves induced by anti-ganglioside antibodies.
    Berardo A; Bacaglio CR; Báez BB; Sambuelli R; Sheikh KA; Lopez PHH
    Neural Regen Res; 2024 Apr; 19(4):895-899. PubMed ID: 37843226
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Immune-Mediated Neuropathies: Pathophysiology and Management.
    Shastri A; Al Aiyan A; Kishore U; Farrugia ME
    Int J Mol Sci; 2023 Apr; 24(8):. PubMed ID: 37108447
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nodo-paranodopathies: Concepts, Clinical Implications, and Management.
    Khadilkar SV; Kamat S; Patel R
    Ann Indian Acad Neurol; 2022; 25(6):1001-1008. PubMed ID: 36911467
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Uptake of severe acute respiratory syndrome coronavirus 2 spike protein mediated by angiotensin converting enzyme 2 and ganglioside in human cerebrovascular cells.
    McQuaid C; Solorzano A; Dickerson I; Deane R
    Front Neurosci; 2023; 17():1117845. PubMed ID: 36875642
    [TBL] [Abstract][Full Text] [Related]  

  • 12.
    Latov N
    Microorganisms; 2022 Oct; 10(11):. PubMed ID: 36363731
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Gangliosides in Neurodegenerative Diseases.
    Ledeen R; Chowdhury S
    Adv Neurobiol; 2023; 29():391-418. PubMed ID: 36255682
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Crystal Structures of the
    Gregory KS; Newell AR; Mojanaga OO; Liu SM; Acharya KR
    Int J Mol Sci; 2022 Aug; 23(17):. PubMed ID: 36077016
    [No Abstract]   [Full Text] [Related]  

  • 15. Gangliosides in nervous system development, regeneration, and pathologies.
    Vasques JF; de Jesus Gonçalves RG; da Silva-Junior AJ; Martins RS; Gubert F; Mendez-Otero R
    Neural Regen Res; 2023 Jan; 18(1):81-86. PubMed ID: 35799513
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In-Depth Characterization of a Re-Engineered Cholera Toxin Manufacturing Process Using Growth-Decoupled Production in
    Danielewicz N; Dai W; Rosato F; Webb ME; Striedner G; Römer W; Turnbull WB; Mairhofer J
    Toxins (Basel); 2022 Jun; 14(6):. PubMed ID: 35737057
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Real time imaging of intra-axonal calcium flux in an explant mouse model of axonal Guillain-Barré syndrome.
    Cunningham ME; McGonigal R; Barrie JA; Yao D; Willison HJ
    Exp Neurol; 2022 Sep; 355():114127. PubMed ID: 35640716
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electrophysiology of Guillain-Barré syndrome in Bangladesh: A prospective study of 312 patients.
    Islam B; Islam Z; Endtz HP; Jahan I; Jacobs BC; Mohammad QD; Franssen H
    Clin Neurophysiol Pract; 2021; 6():155-163. PubMed ID: 35112034
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The role of gangliosides in the organisation of the node of Ranvier examined in glycosyltransferase transgenic mice.
    McGonigal R; Willison HJ
    J Anat; 2022 Nov; 241(5):1259-1271. PubMed ID: 34605014
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Novel Immunological and Therapeutic Insights in Guillain-Barré Syndrome and CIDP.
    Querol L; Lleixà C
    Neurotherapeutics; 2021 Oct; 18(4):2222-2235. PubMed ID: 34549385
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.