These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

207 related articles for article (PubMed ID: 12391127)

  • 1. Profiles of connectin (titin) in atrophied soleus muscle induced by unloading of rats.
    Goto K; Okuyama R; Honda M; Uchida H; Akema T; Ohira Y; Yoshioka T
    J Appl Physiol (1985); 2003 Mar; 94(3):897-902. PubMed ID: 12391127
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Expression of titin in skeletal muscle varies with hind-limb unloading.
    Kasper CE; Xun L
    Biol Res Nurs; 2000 Oct; 2(2):107-15. PubMed ID: 11337816
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Passive tension of rat skeletal soleus muscle fibers: effects of unloading conditions.
    Toursel T; Stevens L; Granzier H; Mounier Y
    J Appl Physiol (1985); 2002 Apr; 92(4):1465-72. PubMed ID: 11896011
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of eccentric exercise on joint stiffness and muscle connectin (titin) isoform in the rat hindlimb.
    Ochi E; Nakazato K; Ishii N
    J Physiol Sci; 2007 Feb; 57(1):1-6. PubMed ID: 17081353
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ubiquitin targeting of rat muscle proteins during short periods of unloading.
    Vermaelen M; Marini JF; Chopard A; Benyamin Y; Mercier J; Astier C
    Acta Physiol Scand; 2005 Sep; 185(1):33-40. PubMed ID: 16128695
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Skeletal muscle HSP72 response to mechanical unloading: influence of endurance training.
    Desplanches D; Ecochard L; Sempore B; Mayet-Sornay MH; Favier R
    Acta Physiol Scand; 2004 Apr; 180(4):387-94. PubMed ID: 15030380
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Physiological, histological and biochemical properties of rat skeletal muscles in response to hindlimb suspension.
    Guillot C; Steinberg JG; Delliaux S; Kipson N; Jammes Y; Badier M
    J Electromyogr Kinesiol; 2008 Apr; 18(2):276-83. PubMed ID: 17158069
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Morphological changes in rat hindlimb muscle fibres during recovery from disuse atrophy.
    Itai Y; Kariya Y; Hoshino Y
    Acta Physiol Scand; 2004 Jun; 181(2):217-24. PubMed ID: 15180794
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Potential targets for skeletal muscle impairment by hypogravity: basic characterization of resting ionic conductances and mechanical threshold of rat fast- and slow-twitch muscle fibers.
    De Luca A; Liantonio A; Pierno S; Desaphy JF; Leoty C; Conte Camerino D
    J Gravit Physiol; 1998 Jul; 5(1):P75-6. PubMed ID: 11542372
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chronic hindlimb suspension unloading markedly decreases turnover rates of skeletal and cardiac muscle proteins and adipose tissue triglycerides.
    Bederman IR; Lai N; Shuster J; Henderson L; Ewart S; Cabrera ME
    J Appl Physiol (1985); 2015 Jul; 119(1):16-26. PubMed ID: 25930021
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Splitting of connectin/titin filaments into beta-connectin/T2 and a 1,200-kDa subfragment by 0.1 mM calcium ions.
    Tatsumi R; Hattori A; Takahashi K
    Adv Biophys; 1996; 33():65-77. PubMed ID: 8922103
    [No Abstract]   [Full Text] [Related]  

  • 12. Afferent and peripheral control of muscle fiber properties during gravitational unloading.
    Shenkman BS; Litvinova KS; Nemirovskaya TL; Podlubnaya ZA; Vikhlyantsev IM; Kozlovskaya IB
    J Gravit Physiol; 2004 Jul; 11(2):P111-4. PubMed ID: 16235439
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of ovariectomy and hindlimb unloading on skeletal muscle.
    Fisher JS; Hasser EM; Brown M
    J Appl Physiol (1985); 1998 Oct; 85(4):1316-21. PubMed ID: 9760322
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Passive force generation and titin isoforms in mammalian skeletal muscle.
    Horowits R
    Biophys J; 1992 Feb; 61(2):392-8. PubMed ID: 1547327
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The role of neural and mechanical influences in maintaining normal fast and slow muscle properties.
    Ohira Y; Yoshinaga T; Ohara M; Kawano F; Wang XD; Higo Y; Terada M; Matsuoka Y; Roy RR; Edgerton VR
    Cells Tissues Organs; 2006; 182(3-4):129-42. PubMed ID: 16914916
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Gravitational unloading inhibits the regenerative potential of atrophied soleus muscle in mice.
    Matsuba Y; Goto K; Morioka S; Naito T; Akema T; Hashimoto N; Sugiura T; Ohira Y; Beppu M; Yoshioka T
    Acta Physiol (Oxf); 2009 Jul; 196(3):329-39. PubMed ID: 19040712
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of exercise prehabilitation on muscle atrophy and contractile properties in hindlimb-unloaded rats.
    Yeo HS; Lim JY
    Muscle Nerve; 2023 Nov; 68(6):886-893. PubMed ID: 37772693
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enhancement of hybrid-fiber types in rat soleus muscle after clenbuterol administration during hindlimb unloading.
    Picquet F; De-Doncker L; Falempin M
    Can J Physiol Pharmacol; 2004 May; 82(5):311-8. PubMed ID: 15213730
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Eccentric exercise prior to hindlimb unloading attenuated reloading muscle damage in rats.
    Prisby RD; Nelson AG; Latsch E
    Aviat Space Environ Med; 2004 Nov; 75(11):941-6. PubMed ID: 15558992
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Muscle regeneration during hindlimb unloading results in a reduction in muscle size after reloading.
    Mozdziak PE; Pulvermacher PM; Schultz E
    J Appl Physiol (1985); 2001 Jul; 91(1):183-90. PubMed ID: 11408429
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.