BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 12391858)

  • 41. [How the features of three-dimensional structure of aspartate proteinases determine their properties].
    Andreeva NS
    Bioorg Khim; 2003; 29(5):453-6. PubMed ID: 14601398
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Model for substrate interactions in C5a peptidase from Streptococcus pyogenes: A 1.9 A crystal structure of the active form of ScpA.
    Kagawa TF; O'Connell MR; Mouat P; Paoli M; O'Toole PW; Cooney JC
    J Mol Biol; 2009 Feb; 386(3):754-72. PubMed ID: 19152799
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Photoaffinity reagents for use with pepsin and other carboxyl proteases.
    Hixson SH; Hurwitz JL; Langridge KJ; Nichols DC; Provost KM; Wolff AM
    Biochem Biophys Res Commun; 1983 Mar; 111(2):630-5. PubMed ID: 6404274
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Modulation of the affinity of aspartic proteases by the mutated residues in active site models.
    Goldblum A
    FEBS Lett; 1990 Feb; 261(2):241-4. PubMed ID: 2107098
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Functional plasticity in the substrate binding site of beta-secretase.
    Gorfe AA; Caflisch A
    Structure; 2005 Oct; 13(10):1487-98. PubMed ID: 16216580
    [TBL] [Abstract][Full Text] [Related]  

  • 46. The role of the flap residue, threonine 77, in the activation and catalytic activity of pepsin A.
    Okoniewska M; Tanaka T; Yada RY
    Protein Eng; 1999 Jan; 12(1):55-61. PubMed ID: 10065711
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Predicting functional residues in Plasmodium falciparum plasmepsins by combining sequence and structural analysis with molecular dynamics simulations.
    Valiente PA; Batista PR; Pupo A; Pons T; Valencia A; Pascutti PG
    Proteins; 2008 Nov; 73(2):440-57. PubMed ID: 18442137
    [TBL] [Abstract][Full Text] [Related]  

  • 48. [Theoretical studies of the electrostatic interactions in aspartic proteinases, intramolecular interactions in pepsin and penicillopepsin].
    Miteva A; Karshikov A; Atanasov B; Zhdanov AA; Andreeva NS
    Mol Biol (Mosk); 1988; 22(6):1456-63. PubMed ID: 3150853
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Closing of the flaps of HIV-1 protease induced by substrate binding: a model of a flap closing mechanism in retroviral aspartic proteases.
    Tóth G; Borics A
    Biochemistry; 2006 May; 45(21):6606-14. PubMed ID: 16716071
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Intramembrane-cleaving aspartic proteases and disease: presenilins, signal peptide peptidase and their homologs.
    Martoglio B; Golde TE
    Hum Mol Genet; 2003 Oct; 12 Spec No 2():R201-6. PubMed ID: 12966028
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Determination of pepstatin-sensitive carboxyl proteases by using pepstatinyldansyldiaminopropane (dansyl-pepstatin) as an active site titrant.
    Yonezawa H; Uchikoba T; Kaneda M
    J Biochem; 1997 Aug; 122(2):294-9. PubMed ID: 9378705
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Flap Dynamics in Pepsin-Like Aspartic Proteases: A Computational Perspective Using Plasmepsin-II and BACE-1 as Model Systems.
    Bhakat S; Söderhjelm P
    J Chem Inf Model; 2022 Feb; 62(4):914-926. PubMed ID: 35138093
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Structural and evolutionary relationships between retroviral and eucaryotic aspartic proteinases.
    Rao JK; Erickson JW; Wlodawer A
    Biochemistry; 1991 May; 30(19):4663-71. PubMed ID: 1851433
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Determination of the active site protonation state of beta-secretase from molecular dynamics simulation and docking experiment: implications for structure-based inhibitor design.
    Park H; Lee S
    J Am Chem Soc; 2003 Dec; 125(52):16416-22. PubMed ID: 14692784
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Proteochemometrics mapping of the interaction space for retroviral proteases and their substrates.
    Kontijevskis A; Petrovska R; Yahorava S; Komorowski J; Wikberg JE
    Bioorg Med Chem; 2009 Jul; 17(14):5229-37. PubMed ID: 19539482
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Accessing the reproducibility and specificity of pepsin and other aspartic proteases.
    Ahn J; Cao MJ; Yu YQ; Engen JR
    Biochim Biophys Acta; 2013 Jun; 1834(6):1222-9. PubMed ID: 23063535
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Mouse homologue of skin-specific retroviral-like aspartic protease involved in wrinkle formation.
    Matsui T; Kinoshita-Ida Y; Hayashi-Kisumi F; Hata M; Matsubara K; Chiba M; Katahira-Tayama S; Morita K; Miyachi Y; Tsukita S
    J Biol Chem; 2006 Sep; 281(37):27512-25. PubMed ID: 16837463
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Crystal structures of active LytM.
    Firczuk M; Mucha A; Bochtler M
    J Mol Biol; 2005 Dec; 354(3):578-90. PubMed ID: 16269153
    [TBL] [Abstract][Full Text] [Related]  

  • 59. N-H...O, O-H...O, and C-H...O hydrogen bonds in protein-ligand complexes: strong and weak interactions in molecular recognition.
    Sarkhel S; Desiraju GR
    Proteins; 2004 Feb; 54(2):247-59. PubMed ID: 14696187
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Crystal structure of a bacterial signal Peptide peptidase.
    Kim AC; Oliver DC; Paetzel M
    J Mol Biol; 2008 Feb; 376(2):352-66. PubMed ID: 18164727
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.