These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 12391858)

  • 81. Why does pepsin have a negative charge at very low pH? An analysis of conserved charged residues in aspartic proteinases.
    Andreeva NS; James MN
    Adv Exp Med Biol; 1991; 306():39-45. PubMed ID: 1812734
    [No Abstract]   [Full Text] [Related]  

  • 82. The thiolase reaction mechanism: the importance of Asn316 and His348 for stabilizing the enolate intermediate of the Claisen condensation.
    Meriläinen G; Poikela V; Kursula P; Wierenga RK
    Biochemistry; 2009 Nov; 48(46):11011-25. PubMed ID: 19842716
    [TBL] [Abstract][Full Text] [Related]  

  • 83. An aspartic protease analogue: intermolecular catalysis of peptide hydrolysis by carboxyl groups.
    Oh S; Chang W; Suh J
    Bioorg Med Chem Lett; 2001 Jun; 11(11):1469-72. PubMed ID: 11378379
    [TBL] [Abstract][Full Text] [Related]  

  • 84. Inherent chaperone-like activity of aspartic proteases reveals a distant evolutionary relation to double-psi barrel domains of AAA-ATPases.
    Hulko M; Lupas AN; Martin J
    Protein Sci; 2007 Apr; 16(4):644-53. PubMed ID: 17384229
    [TBL] [Abstract][Full Text] [Related]  

  • 85. Extracellular proteolytic enzymes of filamentous fungi.
    Pavlukova EB; Belozersky MA; Dunaevsky YE
    Biochemistry (Mosc); 1998 Aug; 63(8):899-928. PubMed ID: 9767183
    [TBL] [Abstract][Full Text] [Related]  

  • 86. Penicillopepsin: 2.8 A structure, active site conformation and mechanistic implications.
    Hsu IN; Delbaere LT; James MN; Hofmann T
    Adv Exp Med Biol; 1977; 95():61-81. PubMed ID: 339694
    [TBL] [Abstract][Full Text] [Related]  

  • 87. A novel family of predicted retroviral-like aspartyl proteases with a possible key role in eukaryotic cell cycle control.
    Krylov DM; Koonin EV
    Curr Biol; 2001 Aug; 11(15):R584-7. PubMed ID: 11516960
    [No Abstract]   [Full Text] [Related]  

  • 88. Comparative investigations on pig gastric proteases and their zymogens.
    Foltmann B; Harlow K; Houen G; Nielsen PK; Sangild P
    Adv Exp Med Biol; 1995; 362():41-51. PubMed ID: 8540351
    [No Abstract]   [Full Text] [Related]  

  • 89. Structure of RC1339/APRc from Rickettsia conorii, a retropepsin-like aspartic protease.
    Li M; Gustchina A; Cruz R; Simões M; Curto P; Martinez J; Faro C; Simões I; Wlodawer A
    Acta Crystallogr D Biol Crystallogr; 2015 Oct; 71(Pt 10):2109-18. PubMed ID: 26457434
    [TBL] [Abstract][Full Text] [Related]  

  • 90. [Proteases, present in the wall of the middle and lower intestines in humans, active in the acidic region].
    BUCHS S
    Hoppe Seylers Z Physiol Chem; 1955 Sep; 301(4-6):201-9. PubMed ID: 13306144
    [No Abstract]   [Full Text] [Related]  

  • 91. Water Plays a Cocatalytic Role in Epoxide Ring Opening Reaction in Aspartate Proteases: A QM/MM Study.
    Ahsan M; Senapati S
    J Phys Chem B; 2019 Sep; 123(38):7955-7964. PubMed ID: 31468966
    [TBL] [Abstract][Full Text] [Related]  

  • 92. Dimer Interface Organization is a Main Determinant of Intermonomeric Interactions and Correlates with Evolutionary Relationships of Retroviral and Retroviral-Like Ddi1 and Ddi2 Proteases.
    Mótyán JA; Miczi M; Tőzsér J
    Int J Mol Sci; 2020 Feb; 21(4):. PubMed ID: 32079302
    [TBL] [Abstract][Full Text] [Related]  

  • 93. Proteases: a primer.
    Hooper NM
    Essays Biochem; 2002; 38():1-8. PubMed ID: 12463157
    [TBL] [Abstract][Full Text] [Related]  

  • 94. Comparison of a retroviral protease in monomeric and dimeric states.
    Wosicki S; Gilski M; Zabranska H; Pichova I; Jaskolski M
    Acta Crystallogr D Struct Biol; 2019 Oct; 75(Pt 10):904-917. PubMed ID: 31588922
    [TBL] [Abstract][Full Text] [Related]  

  • 95. Enzymatically active ultrathin pepsin membranes.
    Raaijmakers MJ; Schmidt T; Barth M; Tutus M; Benes NE; Wessling M
    Angew Chem Int Ed Engl; 2015 May; 54(20):5910-4. PubMed ID: 25779668
    [TBL] [Abstract][Full Text] [Related]  

  • 96. The mechanism of action of aspartic proteases involves 'push-pull' catalysis.
    Polgár L
    FEBS Lett; 1987 Jul; 219(1):1-4. PubMed ID: 3036594
    [TBL] [Abstract][Full Text] [Related]  

  • 97. Is the pseudo-dyad in retroviral proteinase monomers structural or evolutionary?
    Rao JK; Wlodawer A
    FEBS Lett; 1990 Jan; 260(2):201-5. PubMed ID: 2153583
    [TBL] [Abstract][Full Text] [Related]  

  • 98. Structure of recombinant human renin, a target for cardiovascular-active drugs, at 2.5 A resolution.
    Sielecki AR; Hayakawa K; Fujinaga M; Murphy ME; Fraser M; Muir AK; Carilli CT; Lewicki JA; Baxter JD; James MN
    Science; 1989 Mar; 243(4896):1346-51. PubMed ID: 2493678
    [TBL] [Abstract][Full Text] [Related]  

  • 99. [Relative quantitative activity and significance of gastrointestinal mucosal proteases active in acid medium].
    BUCHS S
    Pflugers Arch Gesamte Physiol Menschen Tiere; 1955; 261(5):409-20. PubMed ID: 13310174
    [No Abstract]   [Full Text] [Related]  

  • 100. Parapepsins: two proteolytic enzymes associated with porcine pepsin.
    RYLE AP; PORTER RR
    Biochem J; 1959 Sep; 73(1):75-86. PubMed ID: 14440468
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.