These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 12391872)

  • 41. Self-organization of repetitive spike patterns in developing neuronal networks in vitro.
    Sun JJ; Kilb W; Luhmann HJ
    Eur J Neurosci; 2010 Oct; 32(8):1289-99. PubMed ID: 20846326
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Emergence of network structure due to spike-timing-dependent plasticity in recurrent neuronal networks. II. Input selectivity--symmetry breaking.
    Gilson M; Burkitt AN; Grayden DB; Thomas DA; van Hemmen JL
    Biol Cybern; 2009 Aug; 101(2):103-14. PubMed ID: 19536559
    [TBL] [Abstract][Full Text] [Related]  

  • 43. [Temporal organization of interneuronal relations in the cerebral cortex of the cat in relation to the level of alimentary motivation].
    Merzhanova GKh
    Zh Vyssh Nerv Deiat Im I P Pavlova; 1986; 36(3):520-8. PubMed ID: 3751300
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Organization of frontohippocampal neuronal networks in cats in different types of directed behavior.
    Merzhanova GKh; Dolbakyan EE; Khokhlova VN
    Neurosci Behav Physiol; 2005 Jul; 35(6):667-76. PubMed ID: 16342626
    [TBL] [Abstract][Full Text] [Related]  

  • 45. [The pharmacological testing of intracortical interneuronal connections].
    Gasanov UG; Martinson IuL; Khokhlova VN
    Zh Vyssh Nerv Deiat Im I P Pavlova; 1994; 44(6):1016-25. PubMed ID: 7879425
    [TBL] [Abstract][Full Text] [Related]  

  • 46. [Mechanisms of synchronization in local neural networks of neocortex. Modelling and experimental researches].
    Marchenko VG; Saltykov KA
    Zh Vyssh Nerv Deiat Im I P Pavlova; 2010; 60(1):80-9. PubMed ID: 20352687
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Selective amplification of neocortical neuronal output by fast prepotentials in vivo.
    Crochet S; Fuentealba P; Timofeev I; Steriade M
    Cereb Cortex; 2004 Oct; 14(10):1110-21. PubMed ID: 15115743
    [TBL] [Abstract][Full Text] [Related]  

  • 48. [The spatial-temporal organization of cortical neuronal functions in a conditioned reflex to time].
    Bogdanov AV; Galashina AG
    Zh Vyssh Nerv Deiat Im I P Pavlova; 1994; 44(4-5):738-50. PubMed ID: 7810216
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Subthalamic nucleus functional organization revealed by parkinsonian neuronal oscillations and synchrony.
    Moran A; Bergman H; Israel Z; Bar-Gad I
    Brain; 2008 Dec; 131(Pt 12):3395-409. PubMed ID: 18986993
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Motor cortical and other cortical interneuronal networks that generate very high frequency waves.
    Amassian VE; Stewart M
    Suppl Clin Neurophysiol; 2003; 56():119-42. PubMed ID: 14677387
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Neuronal computations with stochastic network states.
    Destexhe A; Contreras D
    Science; 2006 Oct; 314(5796):85-90. PubMed ID: 17023650
    [TBL] [Abstract][Full Text] [Related]  

  • 52. [The selective intensification of polysynaptic interhemispheric connections with latencies that are multiples of gamma-oscillation periods].
    Sil'kis IG; Bodanova OG
    Zh Vyssh Nerv Deiat Im I P Pavlova; 1998; 48(3):516-23. PubMed ID: 9700916
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Characterization of neocortical principal cells and interneurons by network interactions and extracellular features.
    Barthó P; Hirase H; Monconduit L; Zugaro M; Harris KD; Buzsáki G
    J Neurophysiol; 2004 Jul; 92(1):600-8. PubMed ID: 15056678
    [TBL] [Abstract][Full Text] [Related]  

  • 54. [An analysis of interneuronal connections in the auditory cortex of awake cats].
    Gasanov UG; Galashina AG
    Zh Vyssh Nerv Deiat Im I P Pavlova; 1975; 25(5):1053-60. PubMed ID: 1210747
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Role of persistent sodium current in bursting activity of mouse neocortical networks in vitro.
    van Drongelen W; Koch H; Elsen FP; Lee HC; Mrejeru A; Doren E; Marcuccilli CJ; Hereld M; Stevens RL; Ramirez JM
    J Neurophysiol; 2006 Nov; 96(5):2564-77. PubMed ID: 16870839
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Excitatory signal flow and connectivity in a cortical column: focus on barrel cortex.
    Lübke J; Feldmeyer D
    Brain Struct Funct; 2007 Jul; 212(1):3-17. PubMed ID: 17717695
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Interneuronal frontohippocampal interactions in cats trained to choose on the basis of reinforcement quality.
    Merzhanova GKh; Dolbakyan EE; Khokhlova VN
    Neurosci Behav Physiol; 2004 Jul; 34(6):535-42. PubMed ID: 15368897
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Dynamics of brain activity in motor and frontal cortical areas during music listening: a magnetoencephalographic study.
    Popescu M; Otsuka A; Ioannides AA
    Neuroimage; 2004 Apr; 21(4):1622-38. PubMed ID: 15050586
    [TBL] [Abstract][Full Text] [Related]  

  • 59. [The typological characteristics of higher nervous activity in dogs and the maxima of the cross-correlation function between the electrical activities of the frontal cortex and the brain limbic systems].
    Chilingarian LI
    Zh Vyssh Nerv Deiat Im I P Pavlova; 1999; 49(3):385-99. PubMed ID: 10420550
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Synchronization in hybrid neuronal networks of the hippocampal formation.
    Netoff TI; Banks MI; Dorval AD; Acker CD; Haas JS; Kopell N; White JA
    J Neurophysiol; 2005 Mar; 93(3):1197-208. PubMed ID: 15525802
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.