These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 12392160)

  • 1. Analysis of pollutant levels in central Hong Kong applying neural network method with particle swarm optimization.
    Lu WZ; Fan HY; Leung AY; Wong JC
    Environ Monit Assess; 2002 Nov; 79(3):217-30. PubMed ID: 12392160
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Using improved neural network model to analyze RSP, NOx and NO2 levels in urban air in Mong Kok, Hong Kong.
    Lu WZ; Wang WJ; Wang XK; Xu ZB; Leung AY
    Environ Monit Assess; 2003 Sep; 87(3):235-54. PubMed ID: 12952354
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Prediction of air pollutant concentration based on sparse response back-propagation training feedforward neural networks.
    Ding W; Zhang J; Leung Y
    Environ Sci Pollut Res Int; 2016 Oct; 23(19):19481-94. PubMed ID: 27384165
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Prediction of Air Pollutants Concentration Based on an Extreme Learning Machine: The Case of Hong Kong.
    Zhang J; Ding W
    Int J Environ Res Public Health; 2017 Jan; 14(2):. PubMed ID: 28125034
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Potential assessment of a neural network model with PCA/RBF approach for forecasting pollutant trends in Mong Kok urban air, Hong Kong.
    Lu WZ; Wang WJ; Wang XK; Yan SH; Lam JC
    Environ Res; 2004 Sep; 96(1):79-87. PubMed ID: 15261787
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Potential assessment of the "support vector machine" method in forecasting ambient air pollutant trends.
    Lu WZ; Wang WJ
    Chemosphere; 2005 Apr; 59(5):693-701. PubMed ID: 15792667
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Temporal and Spatial Simulation of Atmospheric Pollutant PM2.5 Changes and Risk Assessment of Population Exposure to Pollution Using Optimization Algorithms of the Back Propagation-Artificial Neural Network Model and GIS.
    Zhang P; Hong B; He L; Cheng F; Zhao P; Wei C; Liu Y
    Int J Environ Res Public Health; 2015 Sep; 12(10):12171-95. PubMed ID: 26426030
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Long short-term memory neural network for air pollutant concentration predictions: Method development and evaluation.
    Li X; Peng L; Yao X; Cui S; Hu Y; You C; Chi T
    Environ Pollut; 2017 Dec; 231(Pt 1):997-1004. PubMed ID: 28898956
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Prediction of maximum daily ozone level using combined neural network and statistical characteristics.
    Wang W; Lu W; Wang X; Leung AY
    Environ Int; 2003 Aug; 29(5):555-62. PubMed ID: 12742398
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Big Data: A Parallel Particle Swarm Optimization-Back-Propagation Neural Network Algorithm Based on MapReduce.
    Cao J; Cui H; Shi H; Jiao L
    PLoS One; 2016; 11(6):e0157551. PubMed ID: 27304987
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optimized Particle Swarm Optimization (OPSO) and its application to artificial neural network training.
    Meissner M; Schmuker M; Schneider G
    BMC Bioinformatics; 2006 Mar; 7():125. PubMed ID: 16529661
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Impact of the 1990 Hong Kong legislation for restriction on sulfur content in fuel.
    Wong CM; Rabl A; Thach TQ; Chau YK; Chan KP; Cowling BJ; Lai HK; Lam TH; McGhee SM; Anderson HR; Hedley AJ
    Res Rep Health Eff Inst; 2012 Aug; (170):5-91. PubMed ID: 23316618
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The impact of the congestion charging scheme on air quality in London. Part 1. Emissions modeling and analysis of air pollution measurements.
    Kelly F; Anderson HR; Armstrong B; Atkinson R; Barratt B; Beevers S; Derwent D; Green D; Mudway I; Wilkinson P;
    Res Rep Health Eff Inst; 2011 Apr; (155):5-71. PubMed ID: 21830496
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Particle swarm algorithm trained neural network for QSAR studies of inhibitors of platelet-derived growth factor receptor phosphorylation.
    Shen Q; Shi WM; Yang XP; Ye BX
    Eur J Pharm Sci; 2006 Aug; 28(5):369-76. PubMed ID: 16713200
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Novel Air Quality Early-Warning System Based on Artificial Intelligence.
    Mo X; Zhang L; Li H; Qu Z
    Int J Environ Res Public Health; 2019 Sep; 16(19):. PubMed ID: 31547044
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Improving neural networks prediction accuracy using particle swarm optimization combiner.
    Elragal HM
    Int J Neural Syst; 2009 Oct; 19(5):387-93. PubMed ID: 19885966
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Research on air pollutant concentration prediction method based on self-adaptive neuro-fuzzy weighted extreme learning machine.
    Li Y; Jiang P; She Q; Lin G
    Environ Pollut; 2018 Oct; 241():1115-1127. PubMed ID: 30029320
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Input strategy analysis for an air quality data modelling procedure at a local scale based on neural network.
    Ragosta M; D'Emilio M; Giorgio GA
    Environ Monit Assess; 2015 May; 187(5):307. PubMed ID: 25925158
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Blowing in the wind: the impact of China's Pearl River Delta on Hong Kong's air quality.
    Xiao F; Brajer V; Mead RW
    Sci Total Environ; 2006 Aug; 367(1):96-111. PubMed ID: 16500694
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A hybrid particle swarm and neural network approach for detection of prostate cancer from benign hyperplasia of prostate.
    Sadoughi F; Ghaderzadeh M
    Stud Health Technol Inform; 2014; 205():481-5. PubMed ID: 25160231
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.