BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 12392181)

  • 1. Distribution and origin of the catecholaminergic innervation in the amphibian mesencephalic tectum.
    Sánchez-Camacho C; Marín O; González A
    Vis Neurosci; 2002; 19(3):321-33. PubMed ID: 12392181
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Catecholaminergic innervation of the septum in the frog: a combined immunohistochemical and tract-tracing study.
    Sánchez-Camacho C; Peña JJ; González A
    J Comp Neurol; 2003 Jan; 455(3):310-23. PubMed ID: 12483684
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Descending supraspinal pathways in amphibians. II. Distribution and origin of the catecholaminergic innervation of the spinal cord.
    Sánchez-Camacho C; Marín O; Smeets WJ; Ten Donkelaar HJ; González A
    J Comp Neurol; 2001 May; 434(2):209-32. PubMed ID: 11331525
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Basal ganglia organization in amphibians: catecholaminergic innervation of the striatum and the nucleus accumbens.
    Marín O; Smeets WJ; González A
    J Comp Neurol; 1997 Feb; 378(1):50-69. PubMed ID: 9120054
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Origin of tectal cholinergic projections in amphibians: a combined study of choline acetyltransferase immunohistochemistry and retrograde transport of dextran amines.
    Marín O; González A
    Vis Neurosci; 1999; 16(2):271-83. PubMed ID: 10367962
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cholinergic and catecholaminergic neurons relay striatal information to the optic tectum in amphibians.
    Marín O; Smeets WJ; Muñoz M; Sanchez-Camacho C; Peña JJ; Lopez JM; González A
    Eur J Morphol; 1999 Apr; 37(2-3):155-9. PubMed ID: 10342448
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Origin and development of descending catecholaminergic pathways to the spinal cord in amphibians.
    Sánchez-Camacho C; Marín O; López JM; Moreno N; Smeets WJ; ten Donkelaar HJ; González A
    Brain Res Bull; 2002 Feb-Mar 1; 57(3-4):325-30. PubMed ID: 11922982
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Immunohistochemical localization of DARPP-32 in the brain and spinal cord of anuran amphibians and its relation with the catecholaminergic system.
    López JM; Morona R; González A
    J Chem Neuroanat; 2010 Dec; 40(4):325-38. PubMed ID: 20887782
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparative analysis of dopamine and tyrosine hydroxylase immunoreactivities in the brain of two amphibians, the anuran Rana ridibunda and the urodele Pleurodeles waltlii.
    Gonzalez A; Smeets WJ
    J Comp Neurol; 1991 Jan; 303(3):457-77. PubMed ID: 1672535
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Laminar distribution and sources of catecholaminergic input to the optic tectum of the pigeon (Columbia livia).
    Rodman HR; Karten HJ
    J Comp Neurol; 1995 Aug; 359(3):424-42. PubMed ID: 7499539
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Distribution of choline acetyltransferase immunoreactivity in the brain of anuran (Rana perezi, Xenopus laevis) and urodele (Pleurodeles waltl) amphibians.
    Marín O; Smeets WJ; González A
    J Comp Neurol; 1997 Jun; 382(4):499-534. PubMed ID: 9184996
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Monoaminergic markers in the optic tectum of the domestic chick.
    Metzger M; Britto LR; Toledo CA
    Neuroscience; 2006 Sep; 141(4):1747-60. PubMed ID: 16781819
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The catecholaminergic innervation of the rat amygdala.
    Asan E
    Adv Anat Embryol Cell Biol; 1998; 142():1-118. PubMed ID: 9586282
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Do amphibians have a true locus coeruleus?
    Marín O; Smeets WJ; González A
    Neuroreport; 1996 May; 7(8):1447-51. PubMed ID: 8856695
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Catecholaminergic innervation of the sympathetic preganglionic cell column of the filefish Stephanolepis cirrhifer.
    Funakoshi K; Nakano M; Atobe Y; Kadota T; Goris RC; Kishida R
    J Comp Neurol; 2002 Jan; 442(3):204-16. PubMed ID: 11774336
    [TBL] [Abstract][Full Text] [Related]  

  • 16. On the basal ganglia of amphibians: dopaminergic mesostriatal projections.
    González A; Muñoz M; Muñoz A; Marin O; Smeets WJ
    Eur J Morphol; 1994 Aug; 32(2-4):271-4. PubMed ID: 7803178
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Somatostatin-like immunoreactivity in the brain of the urodele amphibian Pleurodeles waltl. Colocalization with catecholamines and nitric oxide.
    González A; Moreno N; Morona R; López JM
    Brain Res; 2003 Mar; 965(1-2):246-58. PubMed ID: 12591143
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identification of the origin of catecholaminergic inputs to HVc in canaries by retrograde tract tracing combined with tyrosine hydroxylase immunocytochemistry.
    Appeltants D; Absil P; Balthazart J; Ball GF
    J Chem Neuroanat; 2000 Mar; 18(3):117-33. PubMed ID: 10720795
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Catecholamine innervation of the human cerebral cortex as revealed by comparative immunohistochemistry of tyrosine hydroxylase and dopamine-beta-hydroxylase.
    Gaspar P; Berger B; Febvret A; Vigny A; Henry JP
    J Comp Neurol; 1989 Jan; 279(2):249-71. PubMed ID: 2563268
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Direct catecholaminergic-cholinergic interactions in the basal forebrain. I. Dopamine-beta-hydroxylase- and tyrosine hydroxylase input to cholinergic neurons.
    Zaborszky L; Cullinan WE
    J Comp Neurol; 1996 Oct; 374(4):535-54. PubMed ID: 8910734
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.