BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 12392181)

  • 21. Development of catecholamine systems in the central nervous system of the newt Pleurodeles waltlii as revealed by tyrosine hydroxylase immunohistochemistry.
    González A; Marín O; Smeets WJ
    J Comp Neurol; 1995 Sep; 360(1):33-48. PubMed ID: 7499564
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Nitric oxide synthase in the brain of a urodele amphibian (Pleurodeles waltl) and its relation to catecholaminergic neuronal structures.
    González A; Muñoz A; Muñoz M; Marín O; Arévalo R; Porteros A; Alonso JR
    Brain Res; 1996 Jul; 727(1-2):49-64. PubMed ID: 8842382
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Basal forebrain cholinergic system of the anuran amphibian Rana perezi: evidence for a shared organization pattern with amniotes.
    Sánchez-Camacho C; López JM; González A
    J Comp Neurol; 2006 Feb; 494(6):961-75. PubMed ID: 16385484
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Distribution and morphology of the catecholaminergic neural elements in the human hypothalamus.
    Dudas B; Baker M; Rotoli G; Grignol G; Bohn MC; Merchenthaler I
    Neuroscience; 2010 Nov; 171(1):187-95. PubMed ID: 20801195
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Topographical distribution of NADPH-diaphorase activity in the central nervous system of the frog, Rana perezi.
    Muñoz M; Muñoz A; Marín O; Alonso JR; Arévalo R; Porteros A; González A
    J Comp Neurol; 1996 Mar; 367(1):54-69. PubMed ID: 8867283
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Locus coeruleus promotes survival of dopamine neurons in ventral mesencephalon. An in oculo grafting study.
    Berglöf E; Strömberg I
    Exp Neurol; 2009 Mar; 216(1):158-65. PubMed ID: 19150447
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Catecholamine-containing neurons in the sheep brainstem and diencephalon: immunohistochemical study with tyrosine hydroxylase (TH) and dopamine-beta-hydroxylase (DBH) antibodies.
    Tillet Y; Thibault J
    J Comp Neurol; 1989 Dec; 290(1):69-104. PubMed ID: 2574197
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Catecholamine innervation of the piriform cortex: a tracing and immunohistochemical study in the rat.
    Datiche F; Cattarelli M
    Brain Res; 1996 Feb; 710(1-2):69-78. PubMed ID: 8963680
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Basal ganglia organization in amphibians: afferent connections to the striatum and the nucleus accumbens.
    Marín O; González A; Smeets WJ
    J Comp Neurol; 1997 Feb; 378(1):16-49. PubMed ID: 9120053
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Comparative analysis of neuropeptide FF-like immunoreactivity in the brain of anuran (Rana perezi, Xenopus laevis) and urodele (Pleurodeles waltl) amphibians.
    Crespo M; Moreno N; López JM; González A
    J Chem Neuroanat; 2003 Jan; 25(1):53-71. PubMed ID: 12573459
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Early evidence of catecholaminergic cell groups in 5- and 6-week-old human embryos using tyrosine hydroxylase and dopamine-beta-hydroxylase immunocytochemistry.
    Verney C; Zecevic N; Nikolic B; Alvarez C; Berger B
    Neurosci Lett; 1991 Sep; 131(1):121-4. PubMed ID: 1686476
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Development of the catecholamine neurons in human embryos and fetuses, with special emphasis on the innervation of the cerebral cortex.
    Zecevic N; Verney C
    J Comp Neurol; 1995 Jan; 351(4):509-35. PubMed ID: 7721981
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Catecholaminergic innervation of guinea pig superior olivary complex.
    Mulders WH; Robertson D
    J Chem Neuroanat; 2005 Dec; 30(4):230-42. PubMed ID: 16236480
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Distribution of tyrosine hydroxylase (TH) and dopamine beta-hydroxylase (DBH) immunoreactivity in the central nervous system of two chondrostean fishes (Acipenser baeri and Huso huso).
    Adrio F; Anadón R; Rodríguez-Moldes I
    J Comp Neurol; 2002 Jul; 448(3):280-97. PubMed ID: 12115709
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Basal ganglia organization in amphibians: development of striatal and nucleus accumbens connections with emphasis on the catecholaminergic inputs.
    Márin O; Smeets WJ; González A
    J Comp Neurol; 1997 Jul; 383(3):349-69. PubMed ID: 9205046
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Immunolocalization of catecholamine enzymes, serotonin, dopamine and L-dopa in the brain of Dicentrarchus labrax (Teleostei).
    Batten TF; Berry PA; Maqbool A; Moons L; Vandesande F
    Brain Res Bull; 1993; 31(3-4):233-52. PubMed ID: 8098256
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Catecholaminergic systems in the brain of a gymnotiform teleost fish: an immunohistochemical study.
    Sas E; Maler L; Tinner B
    J Comp Neurol; 1990 Feb; 292(1):127-62. PubMed ID: 1968915
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Brainstem afferents to the tuberomammillary nucleus in the rat brain with special reference to monoaminergic innervation.
    Ericson H; Blomqvist A; Köhler C
    J Comp Neurol; 1989 Mar; 281(2):169-92. PubMed ID: 2565348
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Differential effects of reserpine on brainstem catecholaminergic neurons revealed by Fos protein immunohistochemistry.
    Fritschy JM; Frondoza CG; Grzanna R
    Brain Res; 1991 Oct; 562(1):48-56. PubMed ID: 1686849
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Localization of adrenomedullin-like immunoreactivity in the hypothalamo-hypophysial system of amphibians.
    González A; Marín O; Sánchez-Camacho C; José Peña J; Zudaire E; Martínez A; Cuttitta F; Muñoz M
    Neurosci Lett; 1998 Feb; 242(1):13-6. PubMed ID: 9580198
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.