These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

97 related articles for article (PubMed ID: 12392403)

  • 1. Hydrophobic effects on rates and substrate selectivities in polymeric transaminase mimics.
    Liu L; Rozenman M; Breslow R
    J Am Chem Soc; 2002 Oct; 124(43):12660-1. PubMed ID: 12392403
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dendrimeric pyridoxamine enzyme mimics.
    Liu L; Breslow R
    J Am Chem Soc; 2003 Oct; 125(40):12110-1. PubMed ID: 14518994
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A potent polymer/pyridoxamine enzyme mimic.
    Liu L; Breslow R
    J Am Chem Soc; 2002 May; 124(18):4978-9. PubMed ID: 11982360
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transamination reactions with multiple turnovers catalyzed by hydrophobic pyridoxamine cofactors in the presence of polyethylenimine polymers.
    Liu L; Zhou W; Chruma J; Breslow R
    J Am Chem Soc; 2004 Jul; 126(26):8136-7. PubMed ID: 15225053
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High rates and substrate selectivities in water by polyvinylimidazoles as transaminase enzyme mimics with hydrophobically bound pyridoxamine derivatives as coenzyme mimics.
    Skouta R; Wei S; Breslow R
    J Am Chem Soc; 2009 Nov; 131(43):15604-5. PubMed ID: 19824661
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Stereochemistry of the transamination reaction catalyzed by aminodeoxychorismate lyase from Escherichia coli: close relationship between fold type and stereochemistry.
    Jhee KH; Yoshimura T; Miles EW; Takeda S; Miyahara I; Hirotsu K; Soda K; Kawata Y; Esaki N
    J Biochem; 2000 Oct; 128(4):679-86. PubMed ID: 11011151
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pyridoxamine-amino acid chimeras in semisynthetic aminotransferase mimics.
    Roy RS; Imperiali B
    Protein Eng; 1997 Jun; 10(6):691-8. PubMed ID: 9278283
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synthesis of a cationic pyridoxamine conjugation reagent and application to the mechanistic analysis of an artificial transaminase.
    Kuang H; Häring D; Qi D; Mazhary A; Distefano MD
    Bioorg Med Chem Lett; 2000 Sep; 10(18):2091-5. PubMed ID: 10999478
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Exploring routes to stabilize a cationic pyridoxamine in an artificial transaminase: site-directed mutagenesis versus synthetic cofactors.
    Häring D; Lees MR; Banaszak LJ; Distefano MD
    Protein Eng; 2002 Jul; 15(7):603-10. PubMed ID: 12200543
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identification of novel thermostable taurine-pyruvate transaminase from Geobacillus thermodenitrificans for chiral amine synthesis.
    Chen Y; Yi D; Jiang S; Wei D
    Appl Microbiol Biotechnol; 2016 Apr; 100(7):3101-11. PubMed ID: 26577674
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Specific host-guest interactions in a protein-based artificial transaminase.
    Häring D; Distefano MD
    Bioorg Med Chem; 2001 Sep; 9(9):2461-6. PubMed ID: 11553487
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A molecularly imprinted polymer-based synthetic transaminase.
    Svenson J; Zheng N; Nicholls IA
    J Am Chem Soc; 2004 Jul; 126(27):8554-60. PubMed ID: 15238014
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reversal of optical induction in transamination by regioisomeric bifunctionalized cyclodextrins.
    Fasella E; Dong SD; Breslow R
    Bioorg Med Chem; 1999 May; 7(5):709-14. PubMed ID: 10400323
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dendrimers in solution can have their remote catalytic groups folded back into the core: enantioselective transaminations by dendritic enzyme mimics-II.
    Wei S; Wang J; Venhuizen S; Skouta R; Breslow R
    Bioorg Med Chem Lett; 2009 Oct; 19(19):5543-6. PubMed ID: 19729305
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structural and mechanistic insights into the kynurenine aminotransferase-mediated excretion of kynurenic acid.
    Okada K; Angkawidjaja C; Koga Y; Kanaya S
    J Struct Biol; 2014 Mar; 185(3):257-66. PubMed ID: 24473062
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Crystal structures of human mitochondrial branched chain aminotransferase reaction intermediates: ketimine and pyridoxamine phosphate forms.
    Yennawar NH; Conway ME; Yennawar HP; Farber GK; Hutson SM
    Biochemistry; 2002 Oct; 41(39):11592-601. PubMed ID: 12269802
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of Ketosubstrate on the Product Yield in the Transamination Reaction Catalyzed by Transaminase from Thermoproteus uzoniensis.
    Bezsudnova EY; Stekhanova TN; Boyko KM; Popov VO
    Dokl Biochem Biophys; 2020 Jan; 490(1):5-8. PubMed ID: 32342302
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Substrate-induced changes in sulfhydryl reactivity of bacterial D-amino acid transaminase.
    Soper TS; Ueno H; Manning JM
    Arch Biochem Biophys; 1985 Jul; 240(1):1-8. PubMed ID: 4015092
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Inactivation of dimeric D-amino acid transaminase by a normal substrate through formation of an unproductive coenzyme adduct in one subunit.
    Martinez del Pozo A; Yoshimura T; Bhatia MB; Futaki S; Manning JM; Ringe D; Soda K
    Biochemistry; 1992 Jul; 31(26):6018-23. PubMed ID: 1627544
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structural and biochemical characterization of the dual substrate recognition of the (R)-selective amine transaminase from Aspergillus fumigatus.
    Skalden L; Thomsen M; Höhne M; Bornscheuer UT; Hinrichs W
    FEBS J; 2015 Jan; 282(2):407-15. PubMed ID: 25400251
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.