These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 12392521)

  • 1. Antimicrobial activity of methyl cis-7-oxo deisopropyldehydroabietate on Botrytis cinerea and Lophodermium seditiosum: ultrastructural observations by transmission electron microscopy.
    Feio SS; Franca S; Silva AM; Gigante B; Roseiro JC; Marcelo Curto MJ
    J Appl Microbiol; 2002; 93(5):765-71. PubMed ID: 12392521
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Antimicrobial activity of resin acid derivatives.
    Savluchinske-Feio S; Curto MJ; Gigante B; Roseiro JC
    Appl Microbiol Biotechnol; 2006 Sep; 72(3):430-6. PubMed ID: 16896605
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ultra-Structural Alterations in
    Youssef K; Roberto SR; de Oliveira AG
    Biomolecules; 2019 Oct; 9(10):. PubMed ID: 31597236
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The possible mechanism of antifungal action of tea tree oil on Botrytis cinerea.
    Shao X; Cheng S; Wang H; Yu D; Mungai C
    J Appl Microbiol; 2013 Jun; 114(6):1642-9. PubMed ID: 23495848
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In vitro and in vivo antifungal activities of the essential oils of various plants against tomato grey mould disease agent Botrytis cinerea.
    Soylu EM; Kurt S; Soylu S
    Int J Food Microbiol; 2010 Oct; 143(3):183-9. PubMed ID: 20826038
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Antagonistic effects of Bacillus cereus strain B-02 on morphology, ultrastructure and cytophysiology of Botrytis cinerea.
    Li FX; Ma HQ; Liu J; Zhang C
    Pol J Microbiol; 2012; 61(2):119-28. PubMed ID: 23163211
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Antifungal compound, methyl hippurate from Bacillus velezensis CE 100 and its inhibitory effect on growth of Botrytis cinerea.
    Maung CEH; Lee HG; Cho JY; Kim KY
    World J Microbiol Biotechnol; 2021 Aug; 37(9):159. PubMed ID: 34420104
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Antifungal activity of zinc oxide nanoparticles against Botrytis cinerea and Penicillium expansum.
    He L; Liu Y; Mustapha A; Lin M
    Microbiol Res; 2011 Mar; 166(3):207-15. PubMed ID: 20630731
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chemical characterization and antifungal activity of essential oil of capitula from wild Indian Tagetes patula L.
    Romagnoli C; Bruni R; Andreotti E; Rai MK; Vicentini CB; Mares D
    Protoplasma; 2005 Apr; 225(1-2):57-65. PubMed ID: 15868213
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Antifungal activity of Tagetes patula extracts on some phytopathogenic fungi: ultrastructural evidence on Pythium ultimum.
    Mares D; Tosi B; Poli F; Andreotti E; Romagnoli C
    Microbiol Res; 2004; 159(3):295-304. PubMed ID: 15462529
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Evaluation of the effects of biological preparations on phytopathogenic fungi Didymella applanata and Botrytis cinerea].
    Shpatova TV; Shternshis MV; Beliaev AA
    Prikl Biokhim Mikrobiol; 2003; 39(1):43-6. PubMed ID: 12625041
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rhamnolipids and fengycins interact differently with biomimetic lipid membrane models of Botrytis cinerea and Sclerotinia sclerotiorum: Lipidomics profiles and biophysical studies.
    Botcazon C; Ramos-Martín F; Rodríguez-Moraga N; Bergia T; Acket S; Sarazin C; Rippa S
    Biophys Chem; 2024 Nov; 314():107305. PubMed ID: 39154582
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Talaromyces pinophilus strain AUN-1 as a novel mycoparasite of Botrytis cinerea, the pathogen of onion scape and umbel blights.
    Abdel-Rahim IR; Abo-Elyousr KAM
    Microbiol Res; 2018; 212-213():1-9. PubMed ID: 29853163
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Antifungal modes of action of tea tree oil and its two characteristic components against Botrytis cinerea.
    Yu D; Wang J; Shao X; Xu F; Wang H
    J Appl Microbiol; 2015 Nov; 119(5):1253-62. PubMed ID: 26294100
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Alteration of oxidative phosphorylation as a possible mechanism of the antifungal action of p-coumaric acid against Botrytis cinerea.
    Morales J; Mendoza L; Cotoras M
    J Appl Microbiol; 2017 Oct; 123(4):969-976. PubMed ID: 28714193
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Antagonistic effects of volatiles generated by Bacillus subtilis on spore germination and hyphal growth of the plant pathogen, Botrytis cinerea.
    Chen H; Xiao X; Wang J; Wu L; Zheng Z; Yu Z
    Biotechnol Lett; 2008 May; 30(5):919-23. PubMed ID: 18165869
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Control Effect and Possible Mechanism of the Natural Compound Phenazine-1-Carboxamide against Botrytis cinerea.
    Zhang Y; Wang C; Su P; Liao X
    PLoS One; 2015; 10(10):e0140380. PubMed ID: 26460973
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Antifungal efficacy of Moringa oleifera leaf and seed extracts against Botrytis cinerea causing gray mold disease of tomato (Solanum lycopersicum L.).
    Ahmadu T; Ahmad K; Ismail SI; Rashed O; Asib N; Omar D
    Braz J Biol; 2021; 81(4):1007-1022. PubMed ID: 33175006
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Diterpenoids from Streptomyces sp. SN194 and Their Antifungal Activity against Botrytis cinerea.
    Bi Y; Yu Z
    J Agric Food Chem; 2016 Nov; 64(45):8525-8529. PubMed ID: 27794606
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Action mechanism for 3β-hydroxykaurenoic acid and 4,4-dimethylanthracene-1,9,10(4H)-trione on Botrytis cinerea.
    Mendoza L; Ribera A; Saavedra A; Silva E; Araya-Maturana R; Cotoras M
    Mycologia; 2015; 107(4):661-6. PubMed ID: 25977212
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.