BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 12392883)

  • 1. Is creatine kinase a target for AMP-activated protein kinase in the heart?
    Ingwall JS
    J Mol Cell Cardiol; 2002 Sep; 34(9):1111-20. PubMed ID: 12392883
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Metformin and phenformin activate AMP-activated protein kinase in the heart by increasing cytosolic AMP concentration.
    Zhang L; He H; Balschi JA
    Am J Physiol Heart Circ Physiol; 2007 Jul; 293(1):H457-66. PubMed ID: 17369473
    [TBL] [Abstract][Full Text] [Related]  

  • 3. ATP synthesis during low-flow ischemia: influence of increased glycolytic substrate.
    Cave AC; Ingwall JS; Friedrich J; Liao R; Saupe KW; Apstein CS; Eberli FR
    Circulation; 2000 May; 101(17):2090-6. PubMed ID: 10790352
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Inhibition of the creatine kinase reaction decreases the contractile reserve of isolated rat hearts.
    Hamman BL; Bittl JA; Jacobus WE; Allen PD; Spencer RS; Tian R; Ingwall JS
    Am J Physiol; 1995 Sep; 269(3 Pt 2):H1030-6. PubMed ID: 7573498
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Velocity of the creatine kinase reaction in the neonatal rabbit heart: role of mitochondrial creatine kinase.
    Perry SB; McAuliffe J; Balschi JA; Hickey PR; Ingwall JS
    Biochemistry; 1988 Mar; 27(6):2165-72. PubMed ID: 3378051
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Adenylate kinase: kinetic behavior in intact cells indicates it is integral to multiple cellular processes.
    Dzeja PP; Zeleznikar RJ; Goldberg ND
    Mol Cell Biochem; 1998 Jul; 184(1-2):169-82. PubMed ID: 9746320
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Adenylate kinase-catalyzed phosphoryl transfer couples ATP utilization with its generation by glycolysis in intact muscle.
    Zeleznikar RJ; Dzeja PP; Goldberg ND
    J Biol Chem; 1995 Mar; 270(13):7311-9. PubMed ID: 7706272
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Phosphorylation and activation of heart PFK-2 by AMPK has a role in the stimulation of glycolysis during ischaemia.
    Marsin AS; Bertrand L; Rider MH; Deprez J; Beauloye C; Vincent MF; Van den Berghe G; Carling D; Hue L
    Curr Biol; 2000 Oct; 10(20):1247-55. PubMed ID: 11069105
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Altered creatine kinase enzyme kinetics in diabetic cardiomyopathy. A(31)P NMR magnetization transfer study of the intact beating rat heart.
    Spindler M; Saupe KW; Tian R; Ahmed S; Matlib MA; Ingwall JS
    J Mol Cell Cardiol; 1999 Dec; 31(12):2175-89. PubMed ID: 10640445
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enalapril treatment increases cardiac performance and energy reserve via the creatine kinase reaction in myocardium of Syrian myopathic hamsters with advanced heart failure.
    Nascimben L; Friedrich J; Liao R; Pauletto P; Pessina AC; Ingwall JS
    Circulation; 1995 Mar; 91(6):1824-33. PubMed ID: 7882493
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dual mechanisms regulating AMPK kinase action in the ischemic heart.
    Baron SJ; Li J; Russell RR; Neumann D; Miller EJ; Tuerk R; Wallimann T; Hurley RL; Witters LA; Young LH
    Circ Res; 2005 Feb; 96(3):337-45. PubMed ID: 15653571
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reaction rates of creatine kinase and ATP synthesis in the isolated rat heart. A 31P NMR magnetization transfer study.
    Bittl JA; Ingwall JS
    J Biol Chem; 1985 Mar; 260(6):3512-7. PubMed ID: 3972835
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Kinetics of creatine kinase in an experimental model of low phosphocreatine and ATP in the normoxic heart.
    Stepanov V; Mateo P; Gillet B; Beloeil JC; Lechene P; Hoerter JA
    Am J Physiol; 1997 Oct; 273(4):C1397-408. PubMed ID: 9357786
    [TBL] [Abstract][Full Text] [Related]  

  • 14. On the theoretical limits of detecting cyclic changes in cardiac high-energy phosphates and creatine kinase reaction kinetics using in vivo ³¹P MRS.
    Weiss K; Bottomley PA; Weiss RG
    NMR Biomed; 2015 Jun; 28(6):694-705. PubMed ID: 25914379
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Impairment of energy metabolism in intact residual myocardium of rat hearts with chronic myocardial infarction.
    Neubauer S; Horn M; Naumann A; Tian R; Hu K; Laser M; Friedrich J; Gaudron P; Schnackerz K; Ingwall JS
    J Clin Invest; 1995 Mar; 95(3):1092-100. PubMed ID: 7883957
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Differences in nucleotide compartmentation and energy state in isolated and in situ rat heart: assessment by 31P-NMR spectroscopy.
    Williams JP; Headrick JP
    Biochim Biophys Acta; 1996 Aug; 1276(1):71-9. PubMed ID: 8764892
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Velocity of the creatine kinase reaction decreases in postischemic myocardium: a 31P-NMR magnetization transfer study of the isolated ferret heart.
    Neubauer S; Hamman BL; Perry SB; Bittl JA; Ingwall JS
    Circ Res; 1988 Jul; 63(1):1-15. PubMed ID: 3383370
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization of 5'AMP-activated protein kinase activity in the heart and its role in inhibiting acetyl-CoA carboxylase during reperfusion following ischemia.
    Kudo N; Gillespie JG; Kung L; Witters LA; Schulz R; Clanachan AS; Lopaschuk GD
    Biochim Biophys Acta; 1996 May; 1301(1-2):67-75. PubMed ID: 8652652
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Glycogen utilization and ischemic injury in the isolated rat heart.
    Schaefer S; Ramasamy R
    Cardiovasc Res; 1997 Jul; 35(1):90-8. PubMed ID: 9302351
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dual regulation of the AMP-activated protein kinase provides a novel mechanism for the control of creatine kinase in skeletal muscle.
    Ponticos M; Lu QL; Morgan JE; Hardie DG; Partridge TA; Carling D
    EMBO J; 1998 Mar; 17(6):1688-99. PubMed ID: 9501090
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.